首页 > 分享 > 山茶品种花色变异与花青苷的关系

山茶品种花色变异与花青苷的关系

摘要:

应用高效液相色谱-光电二极管阵列检测(HPLC-DAD)和超高效液相色谱-四极杆-飞行时间质谱(UPLC-Q-TOF-MS)联用技术,分析山茶(Camellia japonica)白色、粉色、红色和黑色4个色系22个品种花瓣中花青苷成分与含量;按照CIE L*a*b*表色系法测量其花色变异,运用多元线性回归方法研究其花色变异与花青苷之间的关系,以期为山茶花色育种提供理论依据。结果表明,山茶品种花瓣中共检测到7种花青苷,分别为矢车菊素-3-O-β-半乳糖苷(Cy3Ga)、矢车菊素-3-O-β-葡萄糖苷(Cy3G)、矢车菊素-3-O-[6-O-(E)-咖啡酰]-β-半乳糖苷(Cy3GaECaf)、矢车菊素-3-O-[6-O-(E)-咖啡酰]-β-葡萄糖苷(Cy3GECaf)、矢车菊素-3-O-[6-O-(Z)-p-香豆酰]-β-葡萄糖苷(Cy3GZpC)、矢车菊素-3-O-[6-O-(E)-p-香豆酰]-β-半乳糖苷(Cy3GaEpC)和矢车菊素-3-O-[6-O-(E)-p-香豆酰]-β-葡萄糖苷(Cy3GEpC)。山茶品种白色花瓣中均未检测到花青苷,粉色、红色和黑色花瓣中主要花青苷均为Cy3G、Cy3GEpC和Cy3Ga;红色花瓣中花青苷总量及Cy3G、Cy3GEpC和Cy3Ga含量远高于粉色,黑色花瓣中花青苷总量及Cy3G、Cy3GEpC和Cy3Ga含量远高于红色和粉色花瓣。从粉色、红色到黑色,花瓣中主要花青苷含量及花青苷总量明显增加,Cy3Ga和Cy3G比例升高,Cy3GEpC比例降低。Cy3G和Cy3GEpC是决定山茶品种花色的主要花青苷,其含量的积累可导致花瓣红色程度增加。

Abstract:

The flower colors, anthocyanin components and contents in 22 cultivars of C. japonica, which were categorized into 4 color series including white, pink, red and dark red, were determined. Flower colors were measured by CIE L*a*b* scale, and anthocyanin components and contents were measured by high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) and ultra-performance liquid chromatography quadrupole-time-of-flight massspectrometry (UPLC-Q-TOF-MS).The relationship between the variation of flower colors and anthocyanin components was explored by multiple liner regression analyses, which provided a theoretical basis for flower color breeding of C.japonica.The results show that seven anthocyanins were detected in cultivars of C. japonica, including cyanidin-3-O-β-galactoside(Cy3Ga), cyanidin-3-O-β-glucoside(Cy3G), cyanidin-3-O-[6-O-(E)-caffeoyl]-β-galactoside(Cy3GaECaf), cyanidin-3-O-[6-O-(E)-caffeoyl]-β-glucoside(Cy3GECaf), cyanidin-3-O-[6-O-(Z)-p-coumaroyl]-β-glucoside(Cy3GZpC), cyanidin-3-O-[6-O-(E)-p-coumaroyl]-β-galactoside(Cy3GaEpC) and cyanidin-3-O-[6-O-(E)-p-coumaroyl]-β-glucoside(Cy3GEpC). No anthocyanins were detected from white petals in cultivars of C. japonica, and the main anthocyanins from pink, red and dark red petals were Cy3G, Cy3GEpC and Cy3Ga. Total anthocyanin and the contents of Cy3G, Cy3GEpC and Cy3Ga from red petals were far higher than that from pink petals. Total anthocyanin and the contents of Cy3G, Cy3GEpC and Cy3Ga from dark red petals were far higher than that from red and pink petals. From pink, red to dark red, total anthocyanins and the main anthocyanins from petals in cultivars of C. japonica increased obviously, and the proportion of Cy3G and Cy3Ga also increased but that of Cy3GEpC decreased. It is concluded that Cy3G and Cy3GEpC were the main anthocyanins which determined the colors of petals in cultivars of C. japonica, and the accumulation of their contents enhanced the red color of petals.

图  1   山茶品种花色分布

Figure  1.   Distribution of flower colors in cultivars of Camellia japonica

图  2   山茶品种花青苷的HPLC图谱

Figure  2.   HPLC chromatogram of anthocyaninsin cultivars of Camellia japonica

表  1   山茶品种花色数据

Table  1   The data of flower colors in cultivars of Camellia japonica

山茶品种 花色 L* a* b* C* h/(°) ‘雪塔’ 白色 89.14 -0.31 1.97 1.99 102.55 ‘白桃’ 白色 83.63 -1.07 6.21 8.95 93.52 ‘白牡丹’ 白色 86.39 -3.05 7.04 7.64 103.07 ‘水晶白’ 白色 90.62 -1.64 5.07 5.33 107.99 ‘绿珠球’ 白色 90.02 -0.43 2.57 2.62 101.08 ‘白鱼尾椿’ 白色 89.59 -1.08 6.76 6.86 99.38 ‘白孔雀椿’ 白色 89.10 -0.51 3.21 3.27 101.21 平均值 88.36 -1.15 4.69 5.24 101.26 ‘粉西施’ 粉色 64.65 37.51 2.85 39.00 3.61 ‘粉玲珑’ 粉色 65.34 42.15 6.25 42.16 5.14 ‘粉明天’ 粉色 69.70 34.41 8.86 37.10 5.56 ‘粉三学士’ 粉色 70.53 29.30 3.33 29.49 6.66 ‘粉鱼尾椿’ 粉色 65.84 35.71 2.70 34.48 4.50 平均值 67.21 35.82 4.80 36.45 5.09 ‘双喜’ 红色 45.21 52.96 12.90 54.52 13.71 ‘孔雀椿’ 红色 40.41 51.65 15.69 53.99 16.89 ‘红绣球’ 红色 45.04 50.08 12.87 51.71 14.40 ‘大朱砂’ 红色 41.87 52.35 12.65 53.87 13.59 ‘紫酱金花’ 红色 41.03 52.71 19.44 56.19 30.27 平均值 42.44 51.36 13.74 53.19 14.96 ‘霍伯’ 黑色 31.58 40.53 15.98 43.56 21.68 ‘皇家天鹅绒’ 黑色 31.90 38.21 15.97 41.41 22.68 ‘黑樱桃’ 黑色 32.25 34.16 12.45 36.43 21.65 ‘午夜魔幻’ 黑色 26.64 31.92 9.89 33.43 17.25 ‘黑魔法’ 黑色 24.95 30.02 12.82 32.79 23.18 平均值 29.46 34.97 13.42 37.52 21.29 L*为明度; a*为红绿色相值; b*为黄蓝色相值; C*为彩度; h为色调角。

表  2   山茶品种花青苷成分的紫外-可见吸收光谱与质谱数据

Table  2   Chromatographic and spectral data of anthocyanins in cultivars of Camellia japonica

色谱峰 保留时间/min 吸收波长λmax/nm A440/Avis,max/% 分子离子m/z 碎片离子m/z 推定结果 P1 8.37 281, 514 32 449 287 Cy3Ga P2 9.46 283, 516 32 449 287 Cy3G P3 21.34 282, 316, 515 34 611 449, 287 Cy3GaECaf P4 24.83 283, 316, 517 34 611 449, 287 Cy3GECaf P5 25.71 284, 312, 516 35 595 449, 287 Gy3GZpC P6 26.14 285, 313, 518 36 595 449, 287 Cy3GaEpC P7 29.96 284, 313, 518 35 595 449, 287 Cy3GEpCA440/Avis,max为花青苷花440 nm与可见光区最大吸收波长(λvis, max)处的吸收值之比。Cy3Ga为矢车菊素-3-O-β-半乳糖苷; Cy3G为矢车菊素-3-O-β-葡萄糖苷; Cy3GaECaf为矢车菊素-3-O-[6-O-(E)-咖啡酰]-β-半乳糖苷; Cy3GECa为矢车菊素-3-O-[6-O-(E)-咖啡酰]-β-葡萄糖苷; Cy3GZpC为矢车菊素-3-O-[6-O-(Z)-p-香豆酰]-β-葡萄糖苷; Cy3GaEpC为矢车菊素-3-O-[6-O-(E)-p-香豆酰]-β-半乳糖苷; Cy3GEpC为矢车菊素-3-O-[6-O-(E)-p-香豆酰]-β-葡萄糖苷。

表  3   山茶品种花青苷含量

Table  3   The contents of anthocyanins in cultivars of Camellia japonica

μg·(100 mg)-1 山茶品种 Cy3Ga Cy3G Cy3GaECaf Cy3GECaf Gy3GZpC Cy3GaEpC Cy3GEpC 合计 ‘粉西施’ 1.46±0.03 9.36±0.46 0.31±0.00 0.24±0.00 0.56±0.12 0.91±0.27 4.91±0.36 17.75 ‘粉玲珑’ 1.25±0.05 11.62±0.38 0.23±0.00 0.18±0.00 0.84±0.08 0.65±0.02 5.19±0.12 19.96 ‘粉明天’ 1.85±0.12 15.34±0.54 — 0.25±0.00 2.69±0.11 0.78±0.04 6.56±0.03 27.47 ‘粉三学士’ 1.89±0.11 7.44±0.26 — — 1.78±0.00 1.39±0.00 6.95±0.25 19.45 ‘粉鱼尾椿’ 2.50±0.21 8.16±0.31 — — — 2.21±0.17 5.37±0.22 18.32 平均值 1.81 10.38 0.11 0.13 1.17 1.19 5.80 20.59 ‘双喜’ 9.28±0.28 42.12±0.62 — — 6.22±0.11 6.58±0.16 25.36±0.43 89.56 ‘孔雀椿’ 11.32±0.28 56.48±0.65 — — 3.12±0.06 4.96±0.15 38.56±0.58 114.44 ‘红绣球’ 12.57±0.26 110.56±1.32 3.67±0.09 2.96±0.00 3.87±0.01 4.32±0.06 19.23±0.18 157.18 ‘大朱砂’ 31.22±0.27 121.09±1.25 2.51±0.03 — 2.76±0.00 11.24±0.43 25.31±0.58 194.13 ‘紫酱金花’ 25.15±0.55 142.35±1.16 2.81±0.01 2.34±0.00 3.62±0.11 4.80±0.09 21.15±0.63 202.22 平均值 17.91 94.52 1.80 1.06 3.92 6.38 25.92 151.51 ‘霍伯’ 45.24±0.65 312.16±1.26 — — 4.42±0.06 6.52±0.00 15.32±0.13 383.66 ‘皇家天鹅绒’ 91.91±0.63 271.45±1.45 — — — — 4.25±0.00 367.61 ‘黑樱桃’ 123.24±0.97 492.66±1.63 23.17±0.26 26.32±0.18 9.24±0.11 23.75±0.31 53.56±0.69 751.93 ‘午夜魔幻’ 152.42±0.75 682.33±2.18 14.78±0.16 — 6.65±0.09 28.17±0.28 52.09±0.72 936.44 ‘黑魔法’ 262.21±1.12 871.22±2.27 11.26±0.32 — 7.21±0.00 23.24±0.35 51.54±0.54 1 226.68 平均值 135.00 525.96 9.84 5.26 5.50 16.34 35.35 733.27“—”表示未鉴定出。Cy3Ga为矢车菊素-3-O-β-半乳糖苷; Cy3G为矢车菊素-3-O-β-葡萄糖苷; Cy3GaECaf为矢车菊素-3-O-[6-O-(E)-咖啡酰]-β-半乳糖苷; Cy3GECa为矢车菊素-3-O-[6-O-(E)-咖啡酰]-β-葡萄糖苷; Cy3GZpC为矢车菊素-3-O-[6-O-(Z)-p-香豆酰]-β-葡萄糖苷; Cy3GaEpC为矢车菊素-3-O-[6-O-(E)-p-香豆酰]-β-半乳糖苷; Cy3GEpC为矢车菊素-3-O-[6-O-(E)-p-香豆酰]-β-葡萄糖苷。 [1]

TANAKA Y, TSUDA S, KUSUMI T.Metabolic Engineering to Modify Flower Color[J]. Plant and Cell Physiology, 1998, 39(11):1119-1126. DOI: 10.1093/oxfordjournals.pcp.a029312

[2]

LI J B, HASHIMOTO F, SHIMIZU K, et al.Anthocyanins From Red Flowers of Camellia reticulata LINDL[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(11):2833-2836. DOI: 10.1271/bbb.70124

[3]

LI J B, HASHIMOTO F, SHIMIZU K, et al.Anthocyanins From Red Flowers of Camellia cultivar 'Dalicha'[J]. Phytochemistry, 2008, 69(18):3166-3171. DOI: 10.1016/j.phytochem.2008.03.014

[4]

LI J B, HASHIMOTO F, SHIMIZU K, et al.Anthocyanins From the Red Flowers of Camellia saluenensis Stapf ex Bean[J]. Journal of the Japanese Society for Horticultural Science, 2008, 77(1):75-79. DOI: 10.2503/jjshs1.77.75

[5]

LI J B, HASHIMOTO F, SHIMIZU K, et al.A New Acylated Anthocyanin Form the Red Flowers of Camellia hongkongensis and Characterization of Anthocyanins in the Section Camellia species[J]. Journal of Integrative Plant Biology, 2009, 51(6):545-552. DOI: 10.1111/j.1744-7909.2009.00828.x

[6]

HAYASHI K, ABE Y, STUDIEN U A.Papier-Chromatographische Ubersicht Der Anthocyane Im Pflanzenreich I[J]. Miscellaneous Reports of the Research Institute for Natural Resources, 1953, 29:1-8.

[7]

SAKATA Y, ARISUMI K I, MIYAJIMA I.Cyanidin-3-Galactoside, a New Anthocyanin From Camellia japonica ssp.Rusticana(Honda) Kitamura and Its Occurrence in the Garden Forms of Camellia of Japanese Origin[J]. Journal of the Japanese Society for Horticultural Science, 1986, 55(1):82-88. DOI: 10.2503/jjshs.55.82

[8]

SAITO N, YOKOI M, YAMAJI M, et al.Cyanidin 3-P-Coumaroylglucoside in Camellia Species and Cultivars[J]. Phytochemistry, 1987, 26(10):2761-2762. DOI: 10.1016/S0031-9422(00)83587-6

[9]

HE Q L, SHEN Y, WANG M X, et al.Natural Variation in Petal Color in Lycoris longituba Revealed by Anthocyanin Components[J]. PLoS One, 2011, 6(8):e22098.DOI: 10.1371/journal.pone.0022098.

[10]

GONNET J F.Colour Effects of Co-Pigmentation of Anthocyanins Revisited:1.A Colorimetric Definition Using the CIELAB Scale[J]. Food Chemistry, 1998, 63(3):409-415. DOI: 10.1016/S0308-8146(98)00053-3

[11]

GONNET J F.Colour Effects of Co-Pigmentation of Anthocyanins Revisited:2.A Colorimetric Look at the Solutions of Cyanin Co-Pigmented Byrutin Using the CIELAB Scale[J]. Food Chemistry, 1999, 66(3):387-394. DOI: 10.1016/S0308-8146(99)00088-6

[12]

UDDIN A F M J, HASHIMOTO F, MIWA T, et al.Seasonal Variation in Pigmentation and Anthocyanidin Phenetics in Commercial Eustoma Flowers[J]. Scientia Horticulturae, 2004, 100(1/2/3/4):103-115.

[13]

BYAMUKAMA R, JORDHEIM M, KIREMIRE B, et al.Anthocyanins From Flowers of Hippeastrum Cultivars[J]. Scientia Horticulturae, 2006, 109 (3):262-266. DOI: 10.1016/j.scienta.2006.05.007

[14]

HASHIMOTO F, TANAKA M, MAEDA H, et al.Changes in Flower Coloration and Sepal Anthocyanins of Cyanic Delphinium Cultivars During Flowering[J]. Bioscience, Biotechnology, and Biochemistry, 2002, 66(8):1652-1659. DOI: 10.1271/bbb.66.1652

[15]

LI J J, SAKATA Y, WANG L S, et al.Chemical Taxonomy of the Xibei Tree Peony From China by Floral Pigmentation[J]. Journal of Plant Research, 2004, 117(1):47-55. DOI: 10.1007/s10265-003-0130-6

[16]

WANG L S, SHIRAISHI A, HASHIMOTO F, et al.Analysis of Petal Anthocyanins to Investigate Flower Coloration of Zhongyuan (Chinese) and Daikon Island (Japanese) Tree Peony Cultivars[J]. Journal of Plant Research, 2001, 114(1):33-43. DOI: 10.1007/PL00013966

[17] 钟培星, 王亮生, 李珊珊, 等.芍药开花过程中花色和色素的变化[J].园艺学报, 2012, 39(11):2271-2282. http://d.old.wanfangdata.com.cn/Periodical/yyxb201211021

ZHONG Pei-xing, WANG Liang-sheng, LI Shan-shan, et al.The Changes of Floral Color and Pigments Composition During the Flowering Period in Paeonia lactiflora Pallas[J]. Acta Horticulturae Sinica, 2012, 39(11):2271-2282. http://d.old.wanfangdata.com.cn/Periodical/yyxb201211021

[18]

DA SILVA F L, ESCRIBANO-BAILÓN T, PÉREZ ALONSO J J, et al.Anthocyanin Pigments in Strawberry[J]. LWT-Food Science and Technology, 2007, 40(2):374-382. DOI: 10.1016/j.lwt.2005.09.018

[19]

OH Y S, LEE J H, YOON S H, et al.Characterization and Quantification of Anthocyanins in Grape Juices Obtained From the Grapes Cultivated in Korea by HPLC/DAD, HPLC/MS, and HPLC/MS/MS[J]. Journal of Food Science, 2008, 73(5):378-389. DOI: 10.1111/j.1750-3841.2008.00756.x

[20] 张洁, 王亮生, 高锦明, 等.贴梗海棠花青苷组成及其与花色的关系[J].园艺学报, 2011, 38(3):527-534. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyxb201103016

ZHANG Jie, WANG Liang-sheng, GAO Jin-ming, et al.Identification of Anthocyanins Involving in Petal Coloration in Chaenomeles speciosa Cultivars[J]. Acta Horticulturae Sinica, 2011, 38(3):527-534. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyxb201103016

[21]

HARBORNE J B.Spectral Methods of Characterizing Anthocyanins[J]. Biochemical Journal, 1958, 70(1):22-28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=PubMed000001694485

[22]

FOSSEN T, ANDERSEN Ø M.Cyanidin 3-O-(6″-Succinyl-glucopyranoside) and Other Anthocyanins From Phragmites australis[J]. Phytochemistry, 1998, 49(4):1065-1068. DOI: 10.1016/S0031-9422(98)00064-8

[23] 张洁, 李崇晖, 王亮生, 等.植物花青苷液质联用方法的分析鉴定[J].食品安全质量检测学报, 2013, 4(3):760-768. http://d.old.wanfangdata.com.cn/Periodical/spaqzljcjs201303020

ZHANG Jie, LI Chong-hui, WANG Liang-sheng, et al.Golden Rules of Separation and Characterization of Plant Anthocyanins by High Pressure Liquid Chromatography-Tandem Mass Spectrometry[J]. Journal of Food Safety & Quality, 2013, 4(3):760-768. http://d.old.wanfangdata.com.cn/Periodical/spaqzljcjs201303020

[24]

WU X L, PRIOR R L.Systematic Identification and Characterization of Anthocyanins by HPLC-ESI-MS/MS in Common Foods in the United States:Fruits and Berries[J]. Journal of Agricultural and Food Chemistry, 2005, 53(7):2589-2599. DOI: 10.1021/jf048068b

[25]

DOWNEY M O, ROCHFORT S.Simultaneous Separation by Reversed-Phase High-Performance Liquid Chromatography and Mass Spectral Identification of Anthocyanins and Flavonols in Shiraz Grape Skin[J]. Journal of Chromatography A, 2008, 1201(1):43-47. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fb963c04a97b2900b5ce64cfd04c29a8

[26]

ZHANG J, WANG L S, GAO J M, et al.Rapid Separation and Identification of Anthocyanins From Flowers of Viola yedoensis and V.prionantha by High-Performance Liquid Chromatography-Photodiode Array Detection-Electrospray Ionisation Mass Spectrometry[J]. Phytochemical Analysis, 2012, 23(1):16-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7b7f89c23d4d780769309ca0e5e68895

[27]

SAKATA Y, ARISUMI K I, MIYAJIMA I.Constitution of Anthocyanins in Flowers of the Wild Forms of Section Camelllia of Japanese and Formosan Origin[J]. Journal of the Japanese Society for Horticultural Science, 1987, 56(2):208-214. DOI: 10.2503/jjshs.56.208

[28]

SAKATA Y, ARISUMI K I.Anthocyanins in Camellia polyodonta How, C. semiserrata Chi and C. chekiangoleosa Hu, and Their Phylogenetic Positions in Section Camellia Based on the Pigmentation[J]. Engei Gakkai Zasshi, 1992, 61(2):375-381. DOI: 10.2503/jjshs.61.375

[29] 孙卫, 李崇晖, 王亮生, 等.菊花不同花色品种中花青素苷代谢分析[J].植物学报, 2010, 45(3):327-336. DOI: 10.3969/j.issn.1674-3466.2010.03.004

SUN Wei, LI Chong-hui, WANG Liang-sheng, et al.Analysis of Anthocyanins and Flavones in Different-Colored Flowers of Chrysanthemum[J]. Chinese Bulletin of Botany, 2010, 45(3):327-336. DOI: 10.3969/j.issn.1674-3466.2010.03.004

[30]

TOMÁS-BARBERÁN F A, HARBORNE J B, SELF R.Dimalonated Anthocyanins From the Flowers of Salvia splendens and S.coccinea[J]. Phytochemistry, 1987, 26(10):2759-2760. DOI: 10.1016/S0031-9422(00)83586-4

[31]

HOU D X.Anthocyanidins Inhibit Activator Protein 1 Activity and Cell Transformation:Structure-Activity Relationship and Molecular Mechanisms[J]. Carcinogenesis, 2003, 25(1):29-36. DOI: 10.1093/carcin/bgg184

相关知识

四种观赏植物花青苷分析及其花色形成机制
嫁接山茶花色变异初试
红山茶组若干物种及品种花色苷组分变异及其在分类中的应用研究
5个山茶品种叶片色素和光谱反射特性及其相关性研究
参与花青苷生物合成调控的菊花bHLH转录因子的制作方法
蓝靛果忍冬花青苷研究进展 Research Progress of Anthocyanin from Lonicera caerulea
花色苷检测
山茶花色素遗传变异规律研究
4种红肉苹果提取液花青苷含量及体外抗氧化研究
一种牡丹中参与花青苷转运和积累的GST基因及其应用的制作方法

网址: 山茶品种花色变异与花青苷的关系 https://m.huajiangbk.com/newsview1117147.html

所属分类:花卉
上一篇: 兰花变异需要创造环境,掌握变异的
下一篇: 摩尔庄园杂交变异植物配方是什么(