首页 > 分享 > 生物质好氧发酵热生产与回收利用研究进展

生物质好氧发酵热生产与回收利用研究进展

摘要:

好氧发酵是目前有机固体废弃物处理的一种有效手段。人们对于好氧发酵的研究主要集中在高效有机肥的获取上,但发酵过程产生的热能不容忽视。发酵热作为一种“零碳”能源,可代替传统化石能源应用于加温供暖、生物干化等领域,助力实现“碳达峰、碳中和”。为将生物质能高效转化为热能利用,人们对发酵热回收利用进行了研究,但是没有将热生产、热回收和热利用三个阶段进行系统联系,导致热回收工艺效率不高。该文主要阐述了好氧发酵产热原理,并从菌剂、原料理化性质和发酵工艺三个方面对发酵热生产的影响进行了探讨,总结了现有热回收利用系统,最后对生物质好氧发酵热生产与回收利用系统的发展方向进行展望,以期为生物质发酵热能利用提供支持。

Abstract:

Energy demand is ever-increasing with the rapid development of society. Chemical energy has also resulted in a variety of atmospheric pollutants in traditional energy reserves, such as coal, oil, and natural gas. Biomass energy is a promising renewable energy to convert solar into chemical energy and then store it inside biomass. The available biomass resources in the world are as high as 170 billion tons at present. But there is a low utilization rate of biomass resources. The rest is burned or abandoned as waste, leading to the waste of resources, as well as serious air, water, and soil pollution. Among them, aerobic fermentation is an effective treatment for organic solid wastes. Both heat energy and organic fertilizer can be produced in a simple process without size restrictions. The fermentation heat energy can be recycled and then used to heat rural winter residential houses, vegetable greenhouses, farms, and processing plants. Organic fertilizers are used to replenish the soil fertility in the field. As a result, the heat-fertilizer combination production using aerobic fermentation is an environmentally friendly energy consumption suitable for rural areas. Although highly effective organic fertilizers have been the primary goal of aerobic fermentation, it is important to consider the heat produced during fermentation. Fermentation heat can serve as a kind of "zero-carbon" energy to replace the traditional fossil energy in heating and bio-drying, particularly for carbon peaking and carbon neutrality. Three stages are also included in the production of and recovering heat through aerobic fermentation: heat production, recovery, and usage. These stages interact with the heat acting as a medium. Some research has focused on the recycling of fermentation heat, but it is still lacking in heat recovery. This study aims to clarify the systematic relationship among the three stages of heat production, recovery, and utilization. The principle of heat production was described in biomass aerobic fermentation, the influencing factors of heat production, recovery, and utilization. The aerobic fermentation of biomass was attributed to the oxidative decomposition of organic matter under the microorganisms and the continuous release of heat. The completely oxidized substances were transformed into carbon dioxide and water, while the partially oxidized microorganisms were oxidized into humus. A systematic investigation was carried out to explore the effects of three factors on the heat production of biomass aerobic fermentation, including bacteriological agents, physicochemical properties of raw materials (particle size, pH, carbon to nitrogen ratio, and moisture), and fermentation (temperature and oxygen content). Furthermore, the current systems were summarized for heat recovery and utilization. Three types were categorized into direct utilization, sensible heat recovery, and exhaust gas heat recovery. Currently, fermentation heat recovery has been explored at lab- and pilot-scale, and commercial systems, where the heat recovery rate varied from 13.4% to 73.0%. The heat recovery rate of the fermentation system depended on the type and scale of fermentation feedstock, the type and mode of heat recovery, the fermentation, and the ambient temperature. In general, the larger the fermentation heat production was, the higher the heat recovery rate was. The average recovery rate for lab-scale systems was 1.90 MJ/h (1.16 MJ/kg DM), for pilot-scale systems 20.04 MJ/h (4.30 MJ/kg DM), for commercial-scale systems 204.91 MJ/h (7.08 MJ/kg DM). The direct utilization of fermentation heat is inexpensive and suitable for self-consumption on farms. The recovering internal heat from the fermentation system with the buried pipe is simple to operate and suitable for domestic use. The heat recovery system for exhaust heat recovery is highly efficient and suitable for commercial environments. Finally, the research direction was also given to provide support for the heat utilization of biomass aerobic fermentation.

图  1   不同的热回收方法示意图[5]

Figure  1.   Graphic illustration of different heat recovery methods [5]

图  2   大型好氧发酵热回收系统[7]

1.发酵系统2.好氧发酵3.蒸汽收集管道4.冷凝水回收并用于农田5.生物过滤器6. 冷凝水收集 7.热回收系统8.鼓风机9.换热器10.水循环11.井水预热管路12.换热器13.热水箱14.牛奶厂

Figure  2.   Large aerobic fermentation heat recovery system [7]

1. Fermentation system 2. Aerobic fermentation 3. Vapor collection ducts 4. Condensate recovery and applied to farm fields 5. Biofilter 6. Condensate collection 7. Heat recovery system 8. Blower 9. Heat exchanger 10. Water loop 11. Well water preheating pipe 12. Heat exchanger 13. Hot water tank 14. Milk house

表  1   生物质好氧发酵过程的产热量

Table  1   Heat production of biomass aerobic fermentation

材料
Material 质量或体积
Mass or volume 含水率
Moisture content/% 时间
Time 产热量
Heat production/(MJ·kg−1) 参考文献
Reference 厨余垃圾和玉米秸秆
Food waste, maize stover 17.20 kg 71 56 h 6.41 [21] 厨余垃圾和木材废弃物
Food waste, wood waste 0.42~0.70 kg 55~65 10 d 2.66~4.28 [28] 禽畜粪便和木屑
Poultry manure, wood chips 275.50 kg 62 30 d 16.80~19.70 [22] 番茄废弃物
Tomato plant residues 50.00 kg 60~65 108 h 1.91 [23] 鸡粪、干草和木屑
Chicken manure, hay, wood chips 130.00 L 60 44 h 0.59 [25] 污水污泥和木屑
Sewage sludges, wood chips 32 .00 kg 65 180 h 0.37~0.75 [20] 绿色废弃物、工业污泥和废水
Green waste, industrial sludge, liquid waste 3 663.00 m3 60 15 d 0.59 [24] 木材Wood 6.00 g 36 d 0.86~1.87 [19] 木材Wood 6.70 g 57 42 d 5.36 [18] 木材Wood 4.70 g 95 d 5.18 [17] 木材Wood 5.00 t 60 1 a 8.89 [29] 注:质量或体积为发酵原料的质量或体积。 Note: mass or volume is the mass or volume of the fermentation material.

表  2   不同的热回收与利用方法

Table  2   Different heat recovery and utilization methods

原料
Raw material 质量或体积
Mass or volume 热回收方法
Heat recovery methods 时间
Time 热回收率或热回收量
Heat recovery in rate or
quantity 热效率
Thermal efficiency /% 参考文献
Reference 污水、污泥和木屑
Sewage sludges, wood chips 32 kg b 56 h 0.79 MJ·kg−1 18.46 [20] 木屑Wood chips 50 t b 180 d 4.33 MJ·kg−1 [69] 木屑Wood chips 50 t b 360 d 4.25 MJ·kg−1 47.77 [29] 木屑Wood chips 197 m3 b 270 d 2.29 MJ·kg−1 [68] 禽畜粪便Farm-yard manure 1 000 L b 2.30 MJ·h−1 [72] 马粪、锯末和木屑
Horse manure, sawdust, and wood chips 435 kg b 25 d 1.58 MJ·kg−1 [68] 草、秸秆和园林废弃物
Grass, straw and garden waste 63 m3 b 140 d 4.80 MJ·kg−1 50.00 [73] 庭院废弃物Yard waste 500 L c 5 d 1.95 MJ·h−1 [74] 禽畜粪便和废弃垫料
Livestock manure, woodchip bedding 544~726 t c 211.01 MJ·h−1 [75] 草屑、污泥、树叶和锯末
Grass clippings, sludge, leaves and sawdust 92.4 kg c 4.85 MJ·h−1 [76] 鸡粪、米糠和木屑
Chicken manure, rice hulls, and sewage sludge 240 L b, c 7 ~14 d 0.036~0.11 MJ·m−3 16.00~22.00 [77] 注: b为显热回收;c为废气热量回收。 Note: b is sensible heat recovery; c is waste gas heat recovery. [1] 张自仕. 生物质能源的利用现状与发展[C]// 中国土木工程学会燃气分会. 2017中国燃气运营与安全研讨会论文集. 天津,2017:381-386.

ZHANG Zishi. Utilization status and development of biomass energy [C]// China Civil Engineering Society Gas Branch. 2017 Proceedings of the China Gas Operation and Safety Seminar. Tianjin, 2017: 381-386. (in Chinese with English abstract)

[2]

AJMAL M, AIPING S, UDDIN S, et al. A review on mathematical modeling of in-vessel composting process and energy balance[J]. Biomass Conversion and Biorefinery, 2020, 12(9): 4201-4213.

[3] 周海宾,刘娟,丁京涛,等. 采用 EEM-FRI 方法研究黑曲霉对牛粪堆肥腐熟及纤维素降解影响[J]. 农业工程学报2022,38(1):276-286.

ZHOU Haibin, LIU Juan, DING Jingtao, et al. Effects of Aspergillus niger on maturity and cellulose degradation of cow manure composting using EEM-FRI method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(1): 276-286. (in Chinese with English abstract)

[4] 杨佳,王国英,唐若兰,等. 生物炭和菌剂对羊粪微好氧堆肥腐熟度和温室气体排放的影响[J]. 农业工程学报,2022,38(10):224-231. doi: 10.11975/j.issn.1002-6819.2022.10.027

YANG Jia, WANG Guoying, TANG Ruolan, et al. Effects of biochar and microbial inoculum on maturity and greenhouse gas emissions during microaerobic composting of sheep manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(10): 224-231. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.10.027

[5]

FAN S, LI A, TER HEIJNE A, et al. Heat potential, generation, recovery and utilization from composting: A review[J]. Resources, Conservation and Recycling, 2021, 175: 1-15.

[6]

ISTRATE I R, IRIBARREN D, GáLVEZ-MARTOS J L, et al. Review of life-cycle environmental consequences of waste-to-energy solutions on the municipal solid waste management system[J]. Resources, Conservation and Recycling, 2020, 157: 1-14.

[7]

SMITH M M, ABER J D. Energy recovery from commercial-scale composting as a novel waste management strategy[J]. Applied Energy, 2018, 211: 194-199. doi: 10.1016/j.apenergy.2017.11.006

[8]

SEKI H, KIYOSE S, SAKIDA S. An experimental system for the recovery, accumulation, and utilization of heat generated by bamboo chip biodegradation using a small-scale apparatus[J]. Journal of Agricultural Meteorology, 2014, 70(1): 1-11. doi: 10.2480/agrmet.D-13-00011

[9]

HAUG R T. The practical handbook of compost engineering [M]. Boca Raton: Routledge, 2018.

[10]

LOMEDA-DE MESA R A P, SORIANO A N, MARQUEZ A R D, et al. Study on the proximate and ultimate analyses and calorific value of coal blending between torrefied biomass from coconut (Cocos nucifera) husk and Semirara coal[J]. IOP Conference Series:Earth and Environmental Science, 2020, 471(1): 1-10.

[11]

SUMAN S, RAI S K, SINGH R K, et al. Compositional ligno-cellulosic behaviour of some residual biomass[J]. Materials Today:Proceedings, 2022, 62(P1): 392-397.

[12]

ESTEVES B, SEN U, PEREIRA H. Influence of chemical composition on heating value of biomass: A review and bibliometric analysis[J]. Energies, 2023, 16(10): 1-17.

[13]

THIPKHUNTHOD P, MEEYOO V, RANGSUNVIGIT P, et al. Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses[J]. Fuel, 2005, 84: 849-857. doi: 10.1016/j.fuel.2005.01.003

[14] 王琳,李德彬,刘子为,等. 污泥处理处置路径碳排放分析[J]. 中国环境科学,2022,42(5):2404-2412. doi: 10.3969/j.issn.1000-6923.2022.05.047

WANG Lin, LI Debin, LIU Ziwei, et al. Analysis on carbon emission from sludge treatment and disposal[J]. China Environmental Science, 2022, 42(5): 2404-2412. (in Chinese with English abstract) doi: 10.3969/j.issn.1000-6923.2022.05.047

[15]

NHUCHHEN D R, ABDUL SALAM P. Estimation of higher heating value of biomass from proximate analysis: A new approach[J]. Fuel, 2012, 99: 55-63. doi: 10.1016/j.fuel.2012.04.015

[16]

PATTANAYAK S, LOHA C, HAUCHHUM L, et al. Application of MLP-ANN models for estimating the higher heating value of bamboo biomass[J]. Biomass Conversion and Biorefinery, 2021, 11(6): 2499-2508. doi: 10.1007/s13399-020-00685-2

[17]

FAN S, SUN Y, TER HEIJNE A, et al. Effect of nitrogen, phosphorus and pH on biological wood oxidation at 42 ℃[J]. Science of the Total Environment, 2020, 726: 1-8.

[18]

FAN S, LI A, TER HEIJNE A, et al. Urine addition as a nutrient source for biological wood oxidation at 40 ℃[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(46): 17079-17087.

[19]

CAIZáN JUANARENA L, TER HEIJNE A, BUISMAN C J N, et al. Wood degradation by thermotolerant and thermophilic fungi for sustainable heat production[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6355-6361.

[20]

VIEL M, SAYAG D, PEYRE A, et al. Optimization of in-vessel co-composting through heat recovery[J]. Biological Wastes, 1987, 20(3): 167-185. doi: 10.1016/0269-7483(87)90152-2

[21]

XIE X Y, ZHAO Y, SUN Q H, et al. A novel method for contributing to composting start-up at low temperature by inoculating cold-adapted microbial consortium[J]. Bioresource Technology, 2017, 238: 39-47. doi: 10.1016/j.biortech.2017.04.036

[22]

AHN H K, RICHARD T L, CHOI H L. Mass and thermal balance during composting of a poultry manure: Wood shavings mixture at different aeration rates[J]. Process Biochemistry, 2007, 42(2): 215-223. doi: 10.1016/j.procbio.2006.08.005

[23]

ALKOAIK F, ABDEL-GHANY A, RASHWAN M, et al. Energy analysis of a rotary drum bioreactor for composting tomato plant residues[J]. Energies, 2018, 11(2): 1-14.

[24]

IRVINE G, LAMONT E R, ANTIZAR-LADISLAO B. Energy from waste: Reuse of compost heat as a source of renewable energy[J]. International Journal of Chemical Engineering, 2010(1): 15-24.

[25]

NWANZE K, CLARK O G. Optimizing heat extraction from compost[J]. Compost Science & Utilization, 2019, 27(4): 217-226.

[26]

WANG Y, PANG L, LIU X, et al. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor[J]. Bioresource Technology, 2016, 206: 164-172. doi: 10.1016/j.biortech.2016.01.097

[27]

RASTOGI M, NANDAL M, KHOSLA B. Microbes as vital additives for solid waste composting[J]. Heliyon, 2020, 6(2): 1-11.

[28]

LEMUS G, LAU A. Biodegradation of lipidic compounds in synthetic food wastes during composting[J]. Canadian Biosystems Engineering, 2002, 44(6): 33-39.

[29]

KIMMAN N. Modeling of a heating system equipped with a biomeiler and a heat pump [R]. Delft: Technical University of Delft, 2019.

[30]

XU P, TRIPATHI P, MISHRA S, et al. Brown sugar as a carbon source can make agricultural organic waste compost enter the secondary thermophilic stage and promote compost decomposition[J]. Environmental Monitoring and Assessment, 2024, 196(2): 113-131. doi: 10.1007/s10661-023-12292-5

[31] 乔如陆,刘佳琪,孙玉鑫,等. 厨余堆肥污染气体减排的工艺参数优化[J]. 农业工程学报,2023,39(14):223-231. doi: 10.11975/j.issn.1002-6819.202304197

QIAO Rulu, LIU Jiaqi, SUN Yuxin, et al. Optimization of process parameters for reducing gas emission from kitchen waste compost[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(14): 223-231. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202304197

[32] 尹子铭,杨燕,唐若兰,等. 秸秆对猪粪静态兼性堆肥无害化和腐熟度的影响[J]. 农业工程学报,2023,39(7):218-226. doi: 10.11975/j.issn.1002-6819.202210143

YIN Ziming, YANG Yan, TANG Ruolan, et al. Effects of maize stover on the harmlessness and maturity during the static facultative composting of pig manure[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(7): 218-226. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202210143

[33] 衣淑娟,邵浩宸,沈玉君,等. 牛粪和玉米秸秆混合好氧堆肥过程分层规律[J]. 农业工程学报,2023,39(3):180-189.

YI Shujuan, SHAO Haochen, SHEN Yujun, et al. Stratification law of the mixed aerobic composting process of cow manure and maize stovers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(3): 180-189. (in Chinese with English abstract)

[34] 刘净伊. 玉米秸秆好氧发酵产热工艺及其用于冬季温室大棚供暖研究[D]. 哈尔滨:哈尔滨工业大学,2021.

LIU Jingyi. Study on Aerobic Fermentation Process of Corn Straw and its Application in Winter Greenhouse Heating [D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese with English abstract)

[35] 李季,王禄山. 堆肥微生物:过去,现在和未来[J]. 生物技术通报,2022,38(5):1-3. doi: 10.3969/j.issn.1002-5464.2022.05.001

LI Ji, WANG Lushan. Composting microbes: Past, present and future[J]. Biotechnology Bulletin, 2022, 38(5): 1-3. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-5464.2022.05.001

[36]

LI D, FENG L, LIU K, et al. Optimization of cold-active CMCase production by psychrotrophic Sphingomonas sp. FLX-7 from the cold region of China[J]. Cellulose, 2016, 23(2): 1335-1347. doi: 10.1007/s10570-016-0859-4

[37]

ZHENG G, LU Z, LI J, et al. Screening and performance of L-14, a novel, highly efficient and low temperature-resistant cellulose-degrading strain[J]. International Journal of Agricultural and Biological Engineering, 2020, 13(1): 247-254. doi: 10.25165/j.ijabe.20201301.5128

[38]

GUPTA S K, KATAKI S, CHATTERJEE S, et al. Cold adaptation in bacteria with special focus on cellulase production and its potential application[J]. Journal of Cleaner Production, 2020, 258: 1-19.

[39]

WU D, WEI Z M, GAO X Z, et al. Reconstruction of core microbes based on producing lignocellulolytic enzymes causing by bacterial inoculation during rice straw composting[J]. Bioresource Technology, 2020, 315: 1-10.

[40]

CHANG Y, ZHOU K Y, YANG T X, et al. Bacillus licheniformis inoculation promoted humification process for kitchen waste composting: Organic components transformation and bacterial metabolic mechanism[J]. Environmental Research, 2023, 237: 1-10.

[41]

GLASGOW E, VANDER MEULEN K, KUCH N, et al. Multifunctional cellulases are potent, versatile tools for a renewable bioeconomy[J]. Current Opinion in Biotechnology, 2021, 67: 141-148. doi: 10.1016/j.copbio.2020.12.020

[42]

WANG S, LONG H, HU X, et al. The co-inoculation of trichoderma viridis and bacillus subtilis improved the aerobic composting efficiency and degradation of lignocellulose[J]. Bioresource Technology, 2024, 394: 1-11.

[43]

ZHOU L, YANG X, WANG X, et al. Effects of bacterial inoculation on lignocellulose degradation and microbial properties during cow dung composting[J]. Bioengineered, 2023, 14(1): 213-228.

[44] 张秧,艾为党,冯海艳,等. 小麦秸杆好氧堆肥过程中微生物多样性与优势菌群分析[J]. 农业工程学报,2021,37(11):206-212. doi: 10.11975/j.issn.1002-6819.2021.11.023

ZHANG Yang, AI Weidang, FENG Haiyan, et al. Microbial diversity and dominant microbial communities in wheat straw aerobic composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(11): 206-212. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2021.11.023

[45] 何惠霞,徐凤花,赵晓锋,等. 低温下牛粪接种发酵剂对堆肥温度与微生物的影响[J]. 东北农业大学学报,2007,38(1):54-58. doi: 10.3969/j.issn.1005-9369.2007.01.012

HE Huixia, XU Fenghua, ZHAO Xiaofeng, et al. Effects of inoculated complex microbial agent to cattle manure on compost temperature and microorganism under low temperature[J]. Journal of Northeast Agricultural University, 2007, 38(1): 54-58. (in Chinese with English abstract) doi: 10.3969/j.issn.1005-9369.2007.01.012

[46] 曹永娜. 促进秸秆好氧发酵产热的菌种筛选与功能研究[D]. 哈尔滨:哈尔滨工业大学,2021.

CAO Yongna. Screening and Function of Bacteria to Promote Thermogenesis from Aerobic Fermentation of Stover [D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese with English abstract)

[47]

TABATA K, HIDA F, KIRIYAMA T, et al. Measurement of soil bacterial colony temperatures and isolation of a high heat-producing bacterium[J]. BMC microbiology, 2013, 13(1): 1-7. doi: 10.1186/1471-2180-13-1

[48]

AYILARA M S, OLANREWAJU O S, BABALOLA O O, et al. Waste management through composting: Challenges and potentials[J]. Sustainability, 2020, 12(11): 1-23.

[49]

XIONG J, ZHUO Q, SHI Z, et al. Multivariate and multiscale investigation of ammonia production and emission mechanisms during membrane-covered cattle manure/wheat straw aerobic composting[J]. Chemical Engineering Journal, 2023, 478: 1-13.

[50]

HONG G H, BUI T P T, LIN C, et al. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review[J]. Chemosphere, 2022, 300: 1-15.

[51] 李丹,陈豹,曹云,等. 二氧化锰对微好氧堆肥腐熟、温室气体及臭气排放的影响[J]. 农业工程学报,2023,39(13):202-212. doi: 10.11975/j.issn.1002-6819.202305027

LI Dan, CHEN Bao, CAO Yun, et al. Effects of manganese dioxide on composting maturity, greenhouse gas and odor emission of multi-organic solid waste micro-aerobic composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(13): 202-212. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202305027

[52] 陈文旭,刘逸飞,蒋思楠,等. 微生物菌剂对厨余垃圾堆肥温室气体减排的影响[J]. 农业工程学报,2022,38(23):181-187. doi: 10.11975/j.issn.1002-6819.2022.23.019

CHEN Wenxu, LIU Yifei, JIANG Sinan, et al. Mitigation effects of microbial agents on greenhouse gas emissions from kitchen waste composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(23): 181-187. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.23.019

[53]

LI Y, ZHANG R, LIU G, et al. Comparison of methane production potential, biodegradability, and kinetics of different organic substrates[J]. Bioresource Technology, 2013, 149: 565-569. doi: 10.1016/j.biortech.2013.09.063

[54]

GUO R, LI G, JIANG T, et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost[J]. Bioresource Technology, 2012, 112: 171-178. doi: 10.1016/j.biortech.2012.02.099

[55]

NEKLYUDOV A D, FEDOTOV G N, IVANKIN A N. Intensification of composting processes by aerobic microorganisms: A review[J]. Applied Biochemistry and Microbiology, 2011, 44(1): 6-18.

[56]

LU Y, WU X, GUO J. Characteristics of municipal solid waste and sewage sludge co-composting[J]. Waste Management, 2009, 29(3): 1152-1157. doi: 10.1016/j.wasman.2008.06.030

[57] 马若男,李丹阳,亓传仁,等. 碳氮比对鸡粪堆肥腐熟度和臭气排放的影响[J]. 农业工程学报,2020,36(24):194-202. doi: 10.11975/j.issn.1002-6819.2020.24.023

MA Ruonan, LI Danyang, QI Chuanren, et al. Effects of C/N ratio on maturity and odor emissions during chicken manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 194-202. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2020.24.023

[58]

BUENO P, TAPIAS R, LOPEZ F, et al. Optimizing composting parameters for nitrogen conservation in composting[J]. Bioresource Technology, 2008, 99(11): 5069-5077. doi: 10.1016/j.biortech.2007.08.087

[59]

BERNAL M P, ALBURQUERQUE J A, MORAL R. Composting of animal manures and chemical criteria for compost maturity assessment: A review[J]. Bioresource Technology, 2009, 100(22): 5444-5453. doi: 10.1016/j.biortech.2008.11.027

[60]

MENGQI Z, SHI A, AJMAL M, et al. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting [J]. Biomass Conversion and Biorefinery, 2021: 1-24.

[61]

LI X, ZHANG R, PANG Y. Characteristics of dairy manure composting with rice straw[J]. Bioresource Technology, 2008, 99(2): 359-367. doi: 10.1016/j.biortech.2006.12.009

[62]

HWANG E J, SHIN H S, TAY J H. Continuous feed, on-site composting of kitchen garbage[J]. Waste Management Research, 2002, 20(2): 119-126. doi: 10.1177/0734242X0202000203

[63] 沈伟航,宋亦心,曹俊,等. 厨余垃圾、绿化废弃物和茶叶渣中试共堆肥系统效果评估[J]. 农业工程学报,2022,38(10):216-223. doi: 10.11975/j.issn.1002-6819.2022.10.026

SHEN Weihang, SONG Yixin, CAO Jun, et al. Evaluating co-composting of kitchens, greening wastes, and exhausted tea on a pilot scale[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(10): 216-223. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.10.026

[64] 丁国超,施雪玲,胡军. 基于 CGA-BP 神经网络的好氧堆肥曝气供氧量预测模型[J]. 农业工程学报,2023,39(7):211-217. doi: 10.11975/j.issn.1002-6819.202211088

DING Guochao, SHI Xueling, HU Jun. Prediction model of the aeration oxygen supply for aerobic composting using CGA-BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2023, 39(7): 211-217. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.202211088

[65]

KEENER H, ELWELL D, EKINCI K, et al. Composting and value-added utilization of manure from a swine finishing facility[J]. Compost Science & Utilization, 2001, 9(4): 312-321.

[66] 杨延梅. 通风量对厨余堆肥氮素转化及氮素损失的影响[J]. 环境科学与技术,2010,33(12):1-4,19.

YANG Yanmei. Influence of ventilation on nitrogen transformation and loss during composting of kitchen waste[J]. Environmental Science & Technology, 2010, 33(12): 1-4,19. (in Chinese with English abstract)

[67]

BAJKO J, FIŠER J, JíCHA M. Condenser-type heat exchanger for compost heat recovery systems[J]. Energies, 2019, 12(8): 1-16.

[68]

SMITH M M, ABER J D, RYNK R. Heat recovery from composting: A comprehensive review of system design, recovery rate, and utilization[J]. Compost Science & Utilization, 2016, 25(Supp.1): 11-22.

[69]

CIUPERCĂ R, NEDELCU A, POPA L, et al. Research on heat recovery in the composting process[J]. Acta Technica Corviniensis-Bulletin of Engineering, 2020, 13(4): 109-114.

[70] 曹晏飞,石苗,王笛,等. 非对称保温塑料大棚内主动通风式酿热补气系统应用初探[J]. 农业工程学报,2022,38(6):204-212. doi: 10.11975/j.issn.1002-6819.2022.06.023

CAO Yanfei, SHI Miao, WANG Di, et al. Application of an active ventilation fermentation heating and supplemental gas system in asymmetric plastic greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(6): 204-212. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.06.023

[71] 王丽丽,许雷,姚纪宇,等. 堆肥废气余热回用对寒区好氧堆肥的影响[J]. 农业工程学报,2022,38(7):237-244. doi: 10.11975/j.issn.1002-6819.2022.07.026

WANG Lili, XU Lei, YAO Jiyu, et al. Effects of preheating ventilation air using exhaust gas on aerobic composting in cold regions[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(7): 237-244. (in Chinese with English abstract) doi: 10.11975/j.issn.1002-6819.2022.07.026

[72]

VEMMELUND N, BERTHELSEN L. A note on heat recovery from mechanically aerated farm-yard manure[J]. Agricultural Wastes, 1979, 1(2): 157-160. doi: 10.1016/0141-4607(79)90049-0

[73]

JASCHKE N, SCHMIDT-BAUM T. Heat recovery of compost reactors: Field study of operational behaviour, heating power and influence factors[J]. Ecological Chemistry and Engineering S-Chemia I Inzynieria Ekologiczna S, 2021, 28(2): 201-217.

[74]

JACCARD L, LEHMANN P, CIVILINI M, et al. Yard waste composting with heat recovery[J]. Compost Science & Utilization, 1993, 1(3): 10-14.

[75]

TUCKER M F. Extracting thermal energy from composting[J]. BioCycle:Journal of Composting & Recycling, 2006, 47(8): 38-43.

[76]

LI H, YU D, YU Y. A preliminary study of an innovative biomass waste aerobic degradation system for hot water heating [M]. Hoboken: Materials Challenges in Alternative and Renewable Energy II, 2013: 69-77.

[77]

SEKI H, KOMORI T. Experiment of heat recovery from compost by a trial heat exchanger [J]. Greenhouse Environment Control Automation 399, 1994: 167-174.

[78] 杨树生, 杨坤, 王世仙. 生物质发酵升温提高沼气池的池温和保温技术[J]. 可再生能源,2007(3):88-89, 91.

YANG Shusheng, YANG Kun, WANG Shixian. Research on heat elevation and preservation technique of methane pool by biolysis and fermentation [J]. Renewable Energy Resources, 2007(3): 88-89, 91. (in Chinese with English abstract)

[79]

HONG J H, PARK K J, SOHN B K. Effect of composting heat from intermittent aerated static pile on the elevation of underground temperature[J]. Applied Engineering in Agriculture, 1997, 13: 679-683. doi: 10.13031/2013.21634

[80]

FULFORD B. The composting greenhouse at new alchemy institute: A report on two years of operation and monitoring march 1984-january 1986 [R]. Hatchville: New Alchemy Institute, 1986.

[81]

THEMELIS N J. Control of heat generation during composting[J]. Biocycle, 2005, 46(1): 28.

[82] 王嘉敏,李陈浩,胡艺馨,等. 基于温室酿热补气的棚体式发酵装置应用研究[J]. 南京农业大学学报,2023:1-14.

WANG Jiamin, LI Chenhao, HU Yixin, et al. Research on the application of greenhouse type fermentation equipment based on greenhouse heating and air replenishment[J]. Journal of Nanjing Agricultural University, 2023: 1-14. (in Chinese with English abstract)

[83] 王志强,沈晓昆. 日本的发酵床养猪技术[J]. 世界农业,2004(2):50-51. doi: 10.3969/j.issn.1002-4433.2004.02.017

WANG Zhiqiang, SHEN Xiaokun. Fermentation bed pig breeding technology in Japan[J]. World Agriculture, 2004(2): 50-51. (in Chinese with English abstract) doi: 10.3969/j.issn.1002-4433.2004.02.017

[84] 秦茂,杨琼,王成,等. 生物垫床在犊牛越冬保暖上的应用[J]. 湖北畜牧兽医,2021,42(2):30-31.

QIN Mao, YANG Qing, WANG Cheng, et al. Application of biological bedding to keep calves warm over winter[J]. Hubei Journal Animal and Veterinary Sciences, 2021, 42(2): 30-31. (in Chinese with English abstract)

[85]

CAI L, CHEN T B, GAO D, et al. Influence of forced air volume on water evaporation during sewage sludge bio-drying[J]. Water Reserach, 2013, 47(13): 4767-4773. doi: 10.1016/j.watres.2013.03.048

[86]

LEKIC S. Possibilities of Heat Recovery from Waste Composting Process [D]. Cambridge: University of Cambridge, 2005.

[87]

LIMA JR R G D S, MAHLER C F. Evaluation of new small-scale composting practices with energy recovery[J]. Detritus, 2020(10): 3-10.

[88]

CHAMBERS D P. The Design and Development of Heat Extraction Technologies for the Utilisation of Compost Thermal Energy[D]. Ireland: Galway-Mayo Institute of Technology , 2009.

[89] 吴金鹏,边大放. 堆肥热水器试验[J]. 能源工程,1982(4):57. [90]

ALLAIN C. Energy recovery at biosolids composting facility[J]. Biocycle, 2007, 48(10): 50-53.

[91]

BECK D, SOYEZ K, PRAUSE M, et al. A combined process for fastcomposting, biotechnological CO2 production and utilization of heat loss for horticulture[J]. Acta Horticulturae, 1992(302): 257-266.

[92]

KOJIMA Y, NAKAKUBO R, ISHIDA M. Recovery and utilization of compost heat from an enclosed vertical‐type composting facility development of warmed water supply system using compost heat[J]. Animal Science Journal, 2022, 93(1): 1-9.

[93]

MALESANI R, PIVATO A, BOCCHI S, et al. Compost heat recovery systems: an alternative to produce renewable heat and promoting ecosystem services[J]. Environmental Challenges, 2021, 4: 1-13.

[94]

MALESANI R, SCHIEVANO A, DI MARIA F, et al. Compost heat recovery systems: Global warming potential impact estimation and comparison through a life cycle assessment approach[J]. Detritus, 2022(19): 37-48. doi: 10.31025/2611-4135/2022.15196

[95]

JACOB G, DIENOROWITZ F, JASCHKE N. Spatial mathematical modeling of static compost piles with heat recovery[J]. Detritus, 2022(20): 56-69. doi: 10.31025/2611-4135/2022.15213

[96] 贺巍,曹永娜,尚宏儒,等. 生物质发酵余热回收系统优化设计与性能分析[J]. 化工学报,2023,74(10):4302-4310.

HE Wei, CAO Yongna, SHANG Hongru, et al. Optimum design and performance analysis of waste heat recovery system for biomass fermentation[J]. CIESC Journal, 2023, 74(10): 4302-4310. (in Chinese with English abstract)

[97]

SMITH M, ABER J J B. Heat recovery from compost[J]. Biocycle, 2014, 55(2): 27.

[98]

RADA E C, RAGAZZI M, VILLOTTI S, et al. Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation[J]. Waste Management, 2014, 34(5): 859-866. doi: 10.1016/j.wasman.2014.02.013

相关知识

废弃花卉秸秆厌氧消化生产沼气的研究进展
“双碳”背景下园林绿化废弃物资源化利用研究进展
一种降解未脱毒生物质制氢的方法及其应用
有机土壤调理剂生产工艺与技术、效果试验和评价(原料为厌氧-好氧污泥)
技术篇:畜禽粪污在好氧堆肥发酵中的问题及对策
微藻碳减排与生物质利用技术研究进展
生物质燃料能源范文
西平县≮生物质颗粒生产≯物超所值={现货供应}
气流膜好氧堆肥发酵技术
生物质资源的特点范文

网址: 生物质好氧发酵热生产与回收利用研究进展 https://m.huajiangbk.com/newsview1126873.html

所属分类:花卉
上一篇: 不同厌氧发酵系统在造纸废水处理中
下一篇: 干式厌氧发酵技术在城市环保中的作