摘要:
植物千姿百态的花结构与其繁衍方式和生存环境密切相关,是其与传粉生物共同适应外界环境等共进化的结果。豆科植物种类众多,花型各异,为人类提供了丰富的食物和生活资源。蝶形花亚科作为豆科最大的亚科,与拟南芥等模式植物不同,蝶形花亚科植物存在复合花序、共同原基和不同对称性的花器官等复杂和精巧的结构及发育过程,为研究植物花发育的分子机制提供了丰富的材料。本文以当前研究比较深入的蝶形花亚科植物大豆、豌豆、蒺藜苜蓿和百脉根为例,介绍了豆科蝶形花亚科植物的花发育过程,重点总结了花分生组织属性决定、花序发育、花器官属性的决定和花型发育的基因调控网络,以期为豆科花发育研究和改良提供理论依据。
关键词: 蝶形花亚科 / 花发育 / 大豆 / 豌豆 / 蒺藜苜蓿 / 百脉根Abstract:
The various floral structures of plants are attributed to their styles of procreation and living environment, which are the results of their coevolution with pollinators to adapt to the external environment.Leguminous plants exhibit different flower types and provide abundant food and living resources for human beings.As the largest subfamily of Leguminosae, Papilionoideae plants display more sophisticated procedures and structures than Arabidopsis, such as compound inflorescence, common primordium and asymmetrical floral organs, so this subfamily possesses plenty of floral variations for the study of floral development.In this paper, we surveyed the progress of floral development in Papilionoideae through four representative plants, Glycine max, Pisum sativum, Medicago truncatula and Lotus japonicas, and summarized the gene regulatory networks of floral meristem identity, inflorescence, floral organ identity and floral symmetry.This work would provide theoretical basis for a comprehensive understanding of floral development and improvement in Leguminosae.
注: 拟南芥(A)、金鱼草(B)和蝶形花亚科(C)花图式。浅绿部分表示苞片,绿色部分表示萼片,红色部分表示花瓣,黄色部分表示雄蕊,交叉位置表示退化雄蕊,灰色部分表示心皮,黑色圆圈表示花轴。
Note: The floral diagrams of Arabidopsis thaliana(A), Antirrhinum majus (B)and Papilionoideae(C).The light green part represents bract, the green part represents sepal, the red part represents petal, the yellow part represents stamen, the cross position represents staminode, the gray part represents carpel, and the black circle represents rachis.
图 1 模式植物与蝶形花亚科植物花图式
Figure 1. Floral diagrams of model plants and Papilionoideae
注: 大豆(A)、豌豆(B)、蒺藜苜蓿(C)和百脉根(D)成熟的花,标尺,2 mm;(E)蝶形花亚科植物花发育阶段模式图,绿色部分表示萼片,红色部分表示花瓣,蓝色部分表示共同原基,黄色部分表示雄蕊,灰色部分表示心皮,FS表示花发育阶段。
Note: The flowers of Glycine max(A), Pisum sativum (B), Medicago truncatula(C) and Lotus japonicas(D), scale bar, 2 mm.(E) Schematic diagram of floral development of Papilionoideae.The green part represents sepal, the red part represents petal, the blue part represents common primordia, the yellow part represents stamen, and the gray part represents carpel, FS represents floral developmental stage.
图 2 蝶形花亚科代表性植物的花和发育阶段模式图
Figure 2. Representative flowers and schematic diagram of floral development in Papilionoideae
注:大豆(A)、豌豆(B)、蒺藜苜蓿(C)和百脉根(D)花发育过程的基因调控网络示意图。I1M代表初级花序分生组织;I2M代表次级花序分生组织;FP代表花原基;CP代表共同原基。黑色的箭头和短线分别表示正调控和负调控作用。
Note: Schematic diagram of gene regulatory networks of floral development of Glycine max(A), Pisum sativum(B), Medicago truncatula(C) and Lotus japonicas(D).I1M, primary inflorescence meristem; I2M, secondary inflorescence meristem; FP, floral primordium; CP, common primordium.Black lines ending in an arrow and ending in a bar denote positive and negative regulatory interactions respectively.
图 3 蝶形花亚科四种植物花发育基因调控网络示意图[7-36]
Figure 3. Schematic diagram of gene regulatory networks of floral development in Papilionoideae
[1]ALVAREZ-BUYLLA E R, BENÍTEZ M, CORVERA-POIRÉ A, et al. Flower development[J]. The Arabidopsis Book, 2010, 8(8): e0127.
[2]WEBERLING F. Morphology of flowers and inflorescences[M]. Cambridge: Cambridge University Press, 1989.
[3]AZANI N, BABINEAU M, BAILEY C D, et al. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny[J]. Taxon, 2017, 66(1): 44-77. DOI: 10.12705/661.3
[4] 庄黎丽. 豆科植物LATHYROIDES基因的功能研究[D]. 上海: 上海交通大学, 2012.ZHUANG L L. Functional analysis of LATHYROIDESIN in legumes[D]. Shanghai: Shanghai Jiao Tong University, 2012.
[5] 董志诚. 百脉根花模式建成分子机制的初步研究[D]. 北京: 中国科学院研究生院, 2003.DONG Z C. Primary study on molecular mechanism of floral patterning in Lotus japonicus[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2003.
[6] 周晶. 豆科3亚科5属5种植物花发育形态学研究[D]. 杨凌: 西北农林科技大学, 2015.ZHOU J. Morphological study on floral development of five species in Leguminosae[D]. Yangling: Northwest Agriculture and Forestry University, 2015.
[7]FOUCHER F, MORIN J, COURTIADE J, et al. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea[J]. The Plant Cell, 2003, 15(11): 2742-2754. DOI: 10.1105/tpc.015701
[8]WONG C E, SINGH M B, BHALLA P L. Novel members of the AGAMOUS LIKE 6 subfamily of MIKCC-type MADS-box genes in soybean[J]. BMC Plant Biology, 2013, 13(1): 105. DOI: 10.1186/1471-2229-13-105
[9]BALANZÀ V, MARTÍNEZ-FERNÁNDEZ I, FERRÁNDIZ C. Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1[J]. Journal of Experimental Botany, 2014, 65(4): 1193 - 1203. DOI: 10.1093/jxb/ert482
[10]LEE J, LEE I. Regulation and function of SOC1, a flowering pathway integrator[J]. Journal of Experimental Botany, 2010, 61(9): 2247-2254. DOI: 10.1093/jxb/erq098
[11]YU H, ITO T, WELLMER F, et al. Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development[J]. Nature Genetics, 2004, 36(2): 157-161. DOI: 10.1038/ng1286
[12]NAN H Y, CAO D, ZHANG D Y, et al. GmFT2a and GmFT5a redundantly and differentially regulate flowering through interaction with and upregulation of the bZIP transcription factor GmFDL19 in soybean[J]. PLoS One, 2014, 9(5): e97669. DOI: 10.1371/journal.pone.0097669
[13]NA X F, JIAN B, YAO WW, et al. Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20(SOC1/AGL20)ortholog in soybean[J]. Plant Cell Reports, 2013, 32(8): 1219-1229. DOI: 10.1007/s00299-013-1419-0
[14]SUN H B, JIA Z, CAO D, et al. GmFT2a, a soybean homolog of FLOWERING LOCUS T, is involved in flowering transition and maintenance[J]. PLoS One, 2011, 6(12): e29238. DOI: 10.1371/journal.pone.0029238
[15]BERBEL A, NAVARRO C, FERRÁNDIZ C, et al. Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species[J]. Plant Journal, 2001, 25(4): 441-451. DOI: 10.1046/j.1365-313x.2001.00974.x
[16]HECHT V, LAURIE R E, SCHOOR J K V, et al. The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod[J]. Plant Cell, 2011, 23(1): 147-161. DOI: 10.1105/tpc.110.081042
[17]BERBEL A, FERRÁNDIZ C, HECHT V, et al. VEGETATIVE1 is essential for development of the compound inflorescence in pea[J]. Nature Communications, 2012, 3: 797. DOI: 10.1038/ncomms1801
[18]SUSSMILCH F C, BERBEL A, HECHT V, et al. Pea VEGETATIVE2 is an FD homolog that is essential for flowering and compound inflorescence development[J]. The Plant Cell, 2015, 27(4): 1046-1060. DOI: 10.1105/tpc.115.136150
[19]TAYLOR S A, HOFER J M I, MURFET I C, et al. PROLIFERATING INFLORESCENCE MERISTEM, a MADS-box gene that regulates floral meristem identity in pea[J]. Plant Physiology, 2002, 129(3): 1150-1159. DOI: 10.1104/pp.001677
[20]CHENG X F, LI G F, TANG Y H, et al. Dissection of genetic regulation of compound inflorescence development in Medicago truncatula[J]. Development, 2018, 145(3): dev158766. http://smartsearch.nstl.gov.cn/paper_detail.html?id=1797c28a3b36caf1dfddf7aaf80f46c4
[21]WANG H L, CHEN J H, WEN J Q, et al. Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula[J]. Plant Physiology, 2008, 146(4): 1759-1772. DOI: 10.1104/pp.108.117044
[22]PUTTERILL J, ZHANG LL, YEOH C C, et al. FT genes and regulation of flowering in the legume Medicago truncatula[J]. Functional Plant Biology, 2013, 40(12): 1199-1207. DOI: 10.1071/FP13087
[23]WELLER J L, ORTEGA R. Genetic control of flowering time in legumes[J]. Frontiers in Plant Science, 2015, 6: 207.
[24]JAUDAL M, MONASH J, ZHANG LL, et al. Overexpression of Medicago SVP genes causes floral defects and delayed flowering in Arabidopsis but only affects floral development in Medicago[J]. Journal of Experimental Botany, 2014, 65(2): 429-442. DOI: 10.1093/jxb/ert384
[25]JAUDAL M, ZHANG L L, CHE C, et al. MtVRN2 is a polycomb VRN2-like gene which represses the transition to flowering in the model legume Medicago truncatula[J]. The Plant Journal, 2016, 86(2): 145-160. DOI: 10.1111/tpj.13156
[26]JAUDAL M, ZHANG L L, CHE C, et al. A SOC1-like gene MtSOC1a promotes flowering and primary stem elongation in Medicago[J]. Journal of Experimental Botany, 2018, 69(20): 4867-4880. DOI: 10.1093/jxb/ery284
[27]ROQUE E, SERWATOWSKA J, ROCHINA M C, et al. Functional specialization of duplicated AP3-like genes in Medicago truncatula[J]. Plant Journal, 2013, 73(4): 663-675. DOI: 10.1111/tpj.12068
[28]WU C X, MA Q B, YAM K, et al. In situ expression of the GmNMH7 gene is photoperiod-dependent in a unique soybean(Glycine max[L. ] Merr. ) flowering reversion system[J]. Planta, 2006, 223(4): 725-735. DOI: 10.1007/s00425-005-0130-y
[29]GUO X Z, ZHAO Z, CHEN J H, et al. A putative CENTRORADIALIS/TERMINAL FLOWER 1-like gene, Ljcen1, plays a role in phase transition in Lotus japonicus[J]. Journal of Plant Physiology, 2006, 163(4): 436-444. DOI: 10.1016/j.jplph.2005.04.037
[30]ONO N, ISHIDA K, YAMASHINO T, et al. Genomewide characterization of the light-responsive and clock-controlled output pathways in Lotus japonicus with special emphasis of its uniqueness[J]. Plant and Cell Physiology, 2010, 51(10): 1800-1814. DOI: 10.1093/pcp/pcq140
[31]WONG C E, KHOR S Y, BHALLA P L, et al. Novel spatial expression of soybean WUSCHEL in the incipient floral primordia[J]. Planta, 2011, 233(3): 553-560. DOI: 10.1007/s00425-010-1320-9
[32]YANG H, SHI G X, LI X, et al. Overexpression of a soybean YABBY gene, GmFILa, causes leaf curling in Arabidopsis thaliana[J]. BMC Plant Biology, 2019, 19(1): 234. DOI: 10.1186/s12870-019-1810-2
[33]TAYLOR S, HOFER J, MURFET I, et al. Stamina pistilloida, the pea ortholog of Fim and UFO, is required for normal development of flowers, inflorescences, and leaves[J]. The Plant Cell, 2001, 13(1): 31-46. DOI: 10.1105/tpc.13.1.31
[34]BERBEL A, NAVARRO C, FERRÁNDIZ C. Functional conservation of PISTILLATA activity in a pea homolog lacking the PI motif[J]. Plant Physiology, 2005, 139(1): 174-185. DOI: 10.1104/pp.104.057687
[35]ZHAO Y, LIU R, XU Y T, et al. AGLF provides C-function in floral organ identity through transcriptional regulation of AGAMOUS in Medicago truncatula[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(11): 5176-5181. DOI: 10.1073/pnas.1820468116
[36]ZHU B T, LI H, HOU Y F, et al. AGAMOUS AND TERMINAL FLOWER controls floral organ identity and inflorescence development in Medicago truncatula[J]. Journal of Integrative Plant Biology, 2019, 61(8): 917 - 923. DOI: 10.1111/jipb.12799
[37]THOMSON B, WELLMER F. Molecular regulation of flower development[J]. Current Topics in Developmental Biology, 2019, 131: 185-210.
[38]CHI Y J, HUANG F, LIU H C, et al. An APETALA1-like gene of soybean regulates flowering time and specifies floral organs[J]. Journal of Plant Physiology, 2011, 168(18): 2251-2259. DOI: 10.1016/j.jplph.2011.08.007
[39]HUANG F, CHI Y J, GAI J Y, et al. Identification of transcription factors predominantly expressed in soybean flowers and characterization of GmSEP1 encoding a SEPALLATA1-like protein[J]. Gene, 2009, 438(1/2): 40-48. http://www.cabdirect.org/abstracts/20093139695.html
[40] 宋伟杰. MADS-box基因在豌豆花发育中的功能研究[D]. 杭州: 杭州师范大学, 2007.SONG W J. Functional analysis of MADS-box genes in pea flower development[D]. Hangzhou: Hangzhou Normal University, 2007.
[41]FERRÁNDIZ C, NAVARRO C, GOMEZ M D, et al. Flower development in pisum sativum: from the war of the whorls to the battle of the common primordia[J]. Developmental Genetics, 1999, 25(3): 280-90. DOI: 10.1002/(SICI)1520-6408(1999)25:3<280::AID-DVG10>3.0.CO;2-3
[42]HECHT V, FOUCHER F, FERRÁNDIZ C, et al. Conservation of Arabidopsis flowering genes in model legumes[J]. Plant Physiology, 2005, 137(4): 1420-1434. DOI: 10.1104/pp.104.057018
[43]BENLLOCH R, NAVARRO C, BELTRÁN J, et al. Floral development of the model legume Medicago truncatula: ontogeny studies as a tool to better characterize homeotic mutations[J]. Sexual Plant Reproduction, 2002, 15(5): 231-241. DOI: 10.1007%2Fs00497-002-0157-1.pdf
[44]BENLLOCH R, ROQUE E, FERRÁNDIZ C, et al. Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula[J]. Plant Journal, 2009, 60(1): 102-111. DOI: 10.1111/j.1365-313X.2009.03939.x
[45]SERWATOWSKA J, ROQUE E, GÓMEZ-MENA C, et al. Two euAGAMOUS genes control C-function in Medicago truncatula[J]. PLoS One, 2014, 9(8): e103770. DOI: 10.1371/journal.pone.0103770
[46]BARKER D G, BIANCHI S, BLONDON F, et al. Medicago truncatula, a model plant for studying the molecular genetics of the rhizobium-legume symbiosis[J]. Plant Molecular Biology Reporter, 1990, 8(1): 40-49. DOI: 10.1007/BF02668879
[47]ZHU B T, LI H, WEN J Q, et al. Functional specialization of duplicated AGAMOUS homologs in regulating floral organ development of Medicago truncatula[J]. Frontiers in Plant Science, 2018, 9: 854. DOI: 10.3389/fpls.2018.00854
[48]FENG X Z, ZHAO Z, TIAN Z X, et al. Control of petal shape and floral zygomorphy in Lotus japonicus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(13): 4970-4975. DOI: 10.1073/pnas.0600681103
[49]FENG Z J, XU S C, LIU N, et al. Soybean TCP transcription factors: evolution, classification, protein interaction and stress and hormone responsiveness[J]. Plant Physiology and Biochemistry, 2018, 127: 129-142. DOI: 10.1016/j.plaphy.2018.03.020
[50] 郝荣华. 大豆花型发育分子机制的初步研究[D]. 济南: 山东师范大学, 2012.HAO R H. Preliminary investigation on molecular mechanism controlling floral symmetry in soybean[D]. Jinan: Shandong Normal University, 2012.
[51]WANG Z, LUO Y H, LI X, et al. Genetic control of floral zygomorphy in pea(Pisum sativum L. )[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(30): 10414-10419. DOI: 10.1073/pnas.0803291105
[52]LI X, ZHUANG LL, AMBROSE M, et al. Genetic analysis of ele mutants and comparative mapping of ele1 locus in the control of organ internal asymmetry in garden pea[J]. Journal of Integrative Plant Biology, 2010, 52(6): 528-535. DOI: 10.1111/j.1744-7909.2010.00949.x
[53]CRONK Q C B. Legume flowers bear fruit[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(13): 4801-4802. DOI: 10.1073/pnas.0601298103
[54]REE R H, CITERNE H L, LAVIN M, et al. Heterogeneous selection on LEGCYC paralogs in relation to flower morphology and the phylogeny of Lupinus(Leguminosae)[J]. Molecular Biology and Evolution, 2004, 21(2): 321-331.
相关知识
蝶形花亚科植物花部适应机制与传粉系统
【植物界全系列】豆科—蝶形花亚科:相思子
蝶形花亚科植物花部适应机制与传粉系统.pdf
茉莉酸调控水稻花器官发育分子调控网络的研究
花发育调控基因的研究进展
高等植物花发育的基因调控
Plant Cell | 之江实验室/农科院作科所/中科院等合作进一步完善了植物开花调控网络,并为作物花期调控提供了潜在的靶基因
拟南芥LEAFY基因在花发育中的网络调控及其生物学功能
蔷薇亚科开花素编码FT基因的独特随机复制及功能多样化
昆明植物所发现蔷薇亚科开花素编码FT基因的独特随机复制及功能多样化
网址: 蝶形花亚科花发育的基因调控网络 https://m.huajiangbk.com/newsview1191919.html
上一篇: 让大豆“回家”,他把论文写在祖国 |
下一篇: 浙大科学家联合团队发现,控制大豆 |