首页 > 分享 > 有机物料配合深耕混合还田快速提升砂质棕壤农业生产力的效果和机理

有机物料配合深耕混合还田快速提升砂质棕壤农业生产力的效果和机理

摘要:

目的  提高土壤肥力是增加作物产量的有效方式,我们尝试了不同耕作和有机肥还田方式对砂粒含量较高且贫瘠的土壤的培肥效果。

方法  田间试验于2018年开始,在辽宁南部砂质棕壤进行,供试作物为玉米。以常规浅翻15 cm (T15)为对照,设置了秸秆浅混还田(0—15 cm,T15+S)、深翻35 cm (T35)、秸秆深混还田(0—35 cm,T35+S)、有机肥深混还田(0—35 cm,T35+M)、秸秆有机肥深混还田(0—35 cm,T35+S+M)、免耕(NT)、免耕秸秆覆盖(NT+S)和免耕秸秆条覆盖(HT+HS)处理,共9个处理 。2020年玉米收获后,测产,同时取0—15 cm和15—30 cm土层样品,测定土壤pH、有机质和养分含量以及有机碳储量。

结果  试验进行3年后,在0—15 cm土层,T35+M和T35+S+M处理土壤有机质含量增幅较T15分别增加了19.2%和20.4%,而NT和T35处理则显著降低;在15—35 cm土层,T35、T35+S、T35+M和T35+S+M处理土壤有机质含量较T15分别增加了12.5%、24.5%、29.9%和35.7%。深翻和有机物料还田(T35+S、T35+M和T35+S+M)显著增加了玉米产量,与T15处理相比,3年T35+S、T35+M和T35+S+M处理玉米产量平均增加了10%、12.3%和16.4%,而浅翻处理(T15+S、NT、NT+S和HT+HS)不同程度地降低了玉米产量。T15+S、HT+HS和NT+S处理间有机质转化率无显著差异,但与T35+S处理相比平均降低了57.9%,与T35+M处理相比平均降低了78.4%。0—15 cm土壤有机质和pH对玉米产量影响显著,而在15—35 cm土层,除pH外,有机质和养分含量以及有机碳储量均对玉米产量有显著影响。

结论  腐熟猪粪、猪粪和玉米秸秆配合深翻混合还田可以快速提升0—35 cm土层中的土壤有机碳储量,提高有机质的转化率,是较为理想的棕壤快速培肥途径。通过提高深层土壤有机质和养分含量,提高了辽宁南部棕壤的农业生产能力。

Abstract:

Objectives  Ameliorating soil fertility is an effective way to increase crop yields, especially in soils with a coarse sandy loam.

Methods  We conducted a field experiment in 2018 on the brown soil in southern Liaoning, China, using nine treatments: conventional shallow tillage (0−15 cm, T15) served as the control, and conventional shallow tillage with maize straw return (T15+S), inversion tillage (0−35 cm) without or with straw return (T35 and T35+S), inversion tillage (0−35 cm) with pig manure (T35+M) and pig manure plus maize straw (T35+S+M), no tillage without or with maize straw mulching (NT and NT+S), and no tillage with maize straw ridged-mulching (HT+HS).

Results  Compared with T15 in the 0−15 cm soil layer, soil organic matter content was increased significantly by 19.2% and 20.4% in T35+M and T35+S+M, while NT and T35 significantly decreased. Soil organic matter content in T35, T35+S, T35+M and T35+S+M was 12.5%, 24.5%, 29.9%, and 35.7% higher than that in T15 in the 15−35 cm soil layer, respectively. In the three experimental years, maize yield showed similar trends among the different treatments, that is, inversion tillage and organic material returning significantly increased maize yield. The average maize yield in T35+S, T35+M and T35+S+M was increased by 10%, 12.3%, and 16.4% in the three experimental years, while the yield in T15+S, NT, NT+S, and HT+HS was decreased compared with T15. The increase in soil organic matter and available nutrient content were the main factors influencing maize yield and contributed significantly to it.

Conclusions  Inversion tillage with organic materials is a more effective way to improve soil fertility, which could enhance the agricultural productivity of brown soil in the southern part of Liaoning Province.

图  1   翻耕和有机物料还田对3个试验年玉米产量的影响

注:T15—浅翻15 cm秸秆不还田;T15+S—浅翻15 cm秸秆浅混还田 (玉米秸秆10000 kg/hm2);NT—免耕秸秆不还田;NT+S—免耕秸秆全覆盖 (玉米秸秆10000 kg/hm2);HT+HS—免耕秸秆条覆盖 (玉米秸秆10000 kg/hm2);T35—深翻35 cm秸秆不还田;T35+S—深翻35 cm秸秆深混还田 (玉米秸秆10000 kg/hm2);T35+M—深翻35 cm有机肥深混还田 (腐熟粪肥30000 kg/hm2);T35+S+M—深翻35 cm有机肥加秸秆深混还田 (腐熟粪肥30000 kg/hm2和玉米秸秆10000 kg/hm2)。柱上不同小写字母表示同一年度处理间差异显著 (P<0.05)

Figure  1.   Effects of tillage and organic amendments on maize yield in three experimental years

Note: T15—Shallow tillage 15 cm and without straw return; T15+S—Shallow tillage 15 cm and shallow straw return (maize straw 10000 kg/hm2); NT—No tillage and without straw return; NT+S—No tillage and straw mulching (maize straw 10000 kg/hm2); HT+HS—No tillage and straw ridged-mulching (maize straw 10000 kg/hm2); T35—Inversion tillage 35 cm and without straw return; T35+S—Inversion tillage 35 cm and inversion straw return (maize straw 10000 kg/hm2); T35+M—Inversion tillage 35 cm and inversion organic fertilizer return (manure 30000 kg/hm2); T35+S+M—Inversion tillage 35 cm and inversion organic fertilizer and straw return (manure 30000 kg/hm2 and maize straw 10000 kg/hm2). Different lowercase letters above the bars indicate significant diffrence among treatments in the same year (P<0.05)

图  2   翻耕和有机物料还田对土壤有机质转化率的影响

注:T15+S—浅翻15 cm秸秆浅混还田 (玉米秸秆10000 kg/hm2);NT+S—免耕秸秆全覆盖 (玉米秸秆10000 kg/hm2);HT+HS—免耕秸秆条覆盖 (玉米秸秆10000 kg/hm2);T35+S—深翻35 cm秸秆深混还田 (玉米秸秆10000 kg/hm2);T35+M—深翻35 cm有机肥深混还田 (腐熟粪肥30000 kg/hm2);T35+S+M—深翻35 cm有机肥加秸秆深混还田 (腐熟粪肥30000 kg/hm2和玉米秸秆10000 kg/hm2)。柱上不同小写字母表示处理间差异显著 (P<0.05)

Figure  2.   Effects of tillage and organic amendments on soil organic matter turnover rate

Note: T15+S—Shallow tillage 15 cm and shallow straw return (maize straw 10000 kg/hm2); NT+S—No tillage and straw mulching (maize straw 10000 kg/hm2); HT+HS—No tillage and straw ridged-mulching (maize straw 10000 kg/hm2); T35+S—Inversion tillage 35 cm and inversion straw return (maize straw 10000 kg/hm2); T35+M—Inversion tillage 35 cm and inversion organic fertilizer return (manure 30000 kg/hm2); T35+S+M—Inversion tillage 35 cm and inversion organic fertilizer and straw return (manure 30000 kg/hm2 and maize straw 10000 kg/hm2). Different lowercase letters above the bars indicate significant diffrence among treatments (P<0.05)

图  3   土壤有机质和速效养分对玉米产量的贡献度

注:AN—碱解氮;TN—全氮;AK—速效钾;AP—有效磷;SOM—土壤有机质;SOCS—土壤有机碳储量。*—P<0.05;**—P<0.01

Figure  3.   Contributions of soil organic matter and available nutrient to maize yield

Note: AN—Available nitrogen; TN—Total nitrogen; AK—Available potassium; AP—Available phosphorous; SOM—Soil organic matter; SOCS—Soil organic carbon storage. *—P<0.05; **—P<0.01

表  1   基础土壤0—35 cm土层物理化学性质

Table  1   Basic soil physicochemical properties at 0−35 cm depth

土层深度 (cm)
Soil depth有机质 (g/kg)
Organic matter全氮 (g/kg)
Total N碱解氮 (mg/kg)
Available N有效磷 (mg/kg)
Available P速效钾 (mg/kg)
Available KpH 0—1517.01.0275.810.985.55.4815—3510.70.6851.82.936.16.49

表  2   翻耕和有机物还田田间处理

Table  2   Field treatments under different combinations of plowing and organic amendments

处理
Treatment耕作
Soil tillage有机物还田
Organic amendments有机物还田量
Amounts of
organic amendments有机物养分年投入量 (kg/hm2)
Annual organic nutrient inputCNP2O5K2O T15浅翻15 cm
Shallow tillage 15 cm秸秆不还田
Without straw return00000T35深翻35 cm
Inversion tillage 35 cm秸秆不还田
Without straw return00000NT免耕
No tillage秸秆不还田
Without straw return00000NT+S免耕
No tillage秸秆全覆盖
Straw mulching玉米秸秆10000 kg/hm2
Maize straw 10000 kg/hm2407062879HT+HS免耕
No tillage秸秆条覆盖
Straw ridged-mulching玉米秸秆10000 kg/hm2
Maize straw 10000 kg/hm2407062879T15+S浅翻15 cm
Shallow tillage 15 cm秸秆浅混还田
Shallow straw return玉米秸秆10000 kg/hm2
Maize straw 10000 kg/hm2407062879T35+S深翻35 cm
Inversion tillage 35 cm秸秆深混还田
Inversion straw return玉米秸秆10000 kg/hm2
Maize straw 10000 kg/hm2407062879T35+M深翻35 cm
Inversion tillage 35 cm有机肥深混还田
Inversion organic fertilizer return腐熟粪肥30000 kg/hm2
Manure 30000 kg/hm29090699261363T35+S+M深翻35 cm
Inversion tillage 35 cm有机肥加秸秆深混还田
Inversion organic fertilizer
and straw return腐熟粪肥30000 kg/hm2和
玉米秸秆10000 kg/hm2
Manure 30000 kg/hm2 and
maize straw 10000 kg/hm213160761269442

表  3   翻耕和有机物料还田对土壤有机质和速效养分含量的影响

Table  3   Effects of plowing and organic amendments on soil organic matter and available nutrient contents

土层深度
Soil depth
(cm)处理
Treatment有机质
Organic matter
(g/kg)有机碳储量
Organic C storage
(t/hm2)全氮
Total N
(g/kg)碱解氮
Available N
(mg/kg)有效磷
Available P
(mg/kg)速效钾
Available K
(mg/kg)pH 0—15T1516.79 c20.42 b1.12 d81.54 ef9.36 d88.00 d5.55 cT15+S18.32 b20.73 b1.19 cd88.49 abc13.97 bc95.67 c5.52 cNT16.13 d20.86 b1.02 e82.67 def9.43 d83.67 d5.52 cNT+S17.29 c21.03 b1.18 cd85.46 cde15.59 ab96.00 bc5.66 bcHT+HS16.91 c20.57 b1.22 bc87.57 bcd17.42 a96.33 bc5.50 cT3515.08 e18.01 d1.03 e79.43 f9.56 d53.33 e5.94 aT35+S18.06 b19.37 c1.19 cd85.80 cde12.75 c88.33 d6.00 aT35+M20.00 a21.62 a1.27 ab91.03 ab17.04 a102.00 b5.88 aT35+S+M20.21 a21.56 a1.30 a92.58 a17.29 a116.33 a5.86 ab15—35T1510.64 d18.90 c0.66 c48.05 d2.69 cd40.67 de6.55 abT15+S10.65 d19.02 c0.68 c48.38 d2.60 cd38.33 e6.68 aNT10.24 d18.41 c0.67 c46.17 d2.88 cd37.00 e6.45 bcNT+S10.40 d18.89 c0.64 c43.79 d2.37 d39.33 e6.68 aHT+HS10.51 d19.12 c0.64 c47.65 d2.26 d40.67 de6.42 bcT3511.98 c19.33 c0.70 bc57.55 c3.15 c46.00 cd6.32 cdT35+S13.25 b20.83 b0.76 ab71.79 ab4.96 b51.33 bc6.35 cdT35+M13.82 ab21.58 ab0.77 a69.74 b5.19 ab53.33 ab6.22 dT35+S+M14.44 a22.45 a0.80 a74.86 a5.76 a58.67 a6.30 cd 注:T15—浅翻15 cm秸秆不还田;T15+S—浅翻15 cm秸秆浅混还田 (玉米秸秆10000 kg/hm2);NT—免耕秸秆不还田;NT+S—免耕秸秆全覆盖 (玉米秸秆10000 kg/hm2);HT+HS—免耕秸秆条覆盖 (玉米秸秆10000 kg/hm2);T35—深翻35 cm秸秆不还田;T35+S—深翻35 cm秸秆深混还田 (玉米秸秆10000 kg/hm2);T35+M—深翻35 cm有机肥深混还田 (腐熟粪肥30000 kg/hm2);T35+S+M—深翻35 cm有机肥加秸秆深混还田 (腐熟粪肥30000 kg/hm2和玉米秸秆10000 kg/hm2)。数据为2020年秋收后采集土壤样品测试结果。同列数据后不同小写字母表示同一土层不同处理间差异显著 (P<0.05)。
Note: T15—Shallow tillage 15 cm and without straw return; T15+S—Shallow tillage 15 cm and shallow straw return (maize straw 10000 kg/hm2); NT—No tillage and without straw return; NT+S—No tillage and straw mulching (maize straw 10000 kg/hm2); HT+HS—No tillage and straw ridged-mulching (maize straw 10000 kg/hm2); T35—Inversion tillage 35 cm and without straw return; T35+S—Inversion tillage 35 cm and inversion straw return (maize straw 10000 kg/hm2); T35+M—Inversion tillage 35 cm and inversion organic fertilizer return (manure 30000 kg/hm2); T35+S+M—Inversion tillage 35 cm and inversion organic fertilizer and straw return (manure 30000 kg/hm2 and maize straw 10000 kg/hm2). Data were from soil samples after harvest in 2020. Values followed by different small letters in a column indicate significant difference among treatments of the same layer (P<0.05). [1] 贾文锦. 辽宁土壤[M]. 沈阳: 辽宁科学技术出版社, 1992.

Jia W J. Liaoning soil[M]. Shenyang: Liaoning Science and Technology Press, 1992.

[2] 白树彬. 辽宁省耕地地力评价及地力提升研究[D]. 沈阳: 沈阳农业大学硕士学位论文, 2016.

Bai S B. Assessment and improvement of cultivated land fertility in Liaoning Province[D]. Shenyang: MS Thesis of Shenyang Agricultural University, 2016.

[3] 陈恩凤, 刘期松, 邱凤琼, 等. 有机肥料优越性的研究(二)施用有机肥料对土壤肥力、微生物活动、作物产量的作用[J]. 土壤学报, 1960, 8(1): 3–14. Chen E F, Liu Q S, Qiu F Q, et al. Study of superiority of organic matter(II) Effects of organic matter application on soil fertility, microbiological activity and crop yield[J]. Acta Pedologica Sinica, 1960, 8(1): 3–14. [4] 武志杰, 张海军, 许广山, 等. 玉米秸秆还田培肥土壤的效果[J]. 应用生态学报, 2002, 13(5): 539–542. Wu Z J, Zhang H J, Xu G S, et al. Effect of returning corn straw into soil on soil fertility[J]. Chinese Journal of Applied Ecology, 2002, 13(5): 539–542. DOI: 10.3321/j.issn:1001-9332.2002.05.006 [5] 李华, 逄焕成, 任天志, 等. 深旋松耕作法对东北棕壤物理性状及春玉米生长的影响[J]. 中国农业科学, 2013, 46(3): 647–656. Li H, Pang H C, Ren T Z, et al. Effects of deep rotary-subsoiling tillage method on brown physical properties and maize growth in Northeast of China[J]. Scientia Agricultura Sinica, 2013, 46(3): 647–656. DOI: 10.3864/j.issn.0578-1752.2013.03.022 [6]

Getahun G T, Kätterer T, Munkholm L J, et al. Short-term effects of loosening and incorporation of straw slurry into the upper subsoil on soil physical properties and crop yield[J]. Soil & Tillage Research, 2018, 184: 62–67.

[7] 敖曼, 张旭东, 关义新. 东北黑土保护性耕作技术的研究与实践[J]. 中国科学院院刊, 2021, 36(10): 1203–1215. Ao M, Zhang X D, Guan Y X, et al. Research and practice of conservation tillage in black soil region of Northeast China[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(10): 1203–1215. [8] 解宏图, 刘华, 张旭东, 等. 辽宁省推广保护性耕作的思考[J]. 农业机械, 2019, (6): 66–68. Xie H T, Liu H, Zhang X D, et al. Reflections on the promotion of conservation tillage in Liaoning Province[J]. Farm Machinery, 2019, (6): 66–68. [9] 陈欣, 张旭东, 宇万太, 等. 坚持土肥高效管理促进区域农田生态系统可持续发展[J]. 中国科学院院刊, 2018, 33(9): 992–999. Chen X, Zhang X D, Yu W T, et al. Efficient management on soil and fertilizer to promote sustainable development of local agro-ecosystems in Liaohe Plain, China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(9): 992–999. [10] 隋鹏祥, 张心昱, 温学发, 等. 耕作方式和秸秆还田对棕壤土壤养分和酶活性的影响[J]. 生态学杂志, 2016, 35(8): 2038–2045. Sui P X, Zhang X Y, Wen X F, et al. Effects of tillage and straw management on nutrient contents and enzyme activities of brown soil[J]. Chinese Journal of Ecology, 2016, 35(8): 2038–2045. [11] 邹文秀, 韩晓增, 陆欣春, 等. 玉米秸秆混合还田深度对土壤有机质及养分含量的影响[J]. 土壤与作物, 2018, 7(2): 139–147. Zou W X, Han X Z, Lu X C, et al. Responses of soil organic matter and nutrients contents to corn stalk incorporated into different soil depths[J]. Soil and Crop, 2018, 7(2): 139–147. DOI: 10.11689/j.issn.2095-2961.2018.02.006 [12] 邹文秀, 陆欣春, 韩晓增, 等. 耕作深度及秸秆还田对农田黑土土壤供水能力及作物产量的影响[J]. 土壤与作物, 2016, 5(3): 141–149. Zou W X, Lu X C, Han X Z, et al. The impact of tillage depth and straw incorporation on crop yield and soil water supply in arable black soil[J]. Soil and Crop, 2016, 5(3): 141–149. [13] 韩晓增, 邹文秀. 我国东北黑土地保护与肥力提升的成效与建议[J]. 中国科学院院刊, 2018, 33(2): 206–212. Han X Z, Zou W X. Effects and suggestions of black soil protection and soil fertility increase in Northeast China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 206–212. [14] 韩晓增, 邹文秀, 严君, 等. 农田生态学和长期试验示范引领黑土地保护和农业可持续发展[J]. 中国科学院院刊, 2019, 34(3): 362–370. Han X Z, Zou W X, Yan J, et al. Ecology in agriculture and long-term research guide protection of black soil and agricultural sustainable development in Northeast China[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3): 362–370. [15] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999.

Lu R K. Analytical methods for soil and agro-chemistry[M]. Beijing: China Agricultural Science and Technology Press, 1999.

[16] 郝翔翔, 韩晓增, 李禄军, 等. 土地利用方式对黑土剖面有机碳分布及碳储量的影响[J]. 应用生态学报, 2015, 26(4): 965–972. Hao X X, Han X Z, Li L J, et al. Profile distribution and storage of soil organic carbon in a black soil as affected by land use types[J]. Chinese Journal of Applied Ecology, 2015, 26(4): 965–972. [17]

Lai J, Zou Y, Zhang J, et al. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package[J]. Methods in Ecology and Evolution, 2022, 13(4): 782–788. DOI: 10.1111/2041-210X.13800

[18]

Alcántara V, Don A, Well R, et al. Deep ploughing increases agricultural soil organic matter stocks[J]. Global Change Biology, 2016, 22(8): 2939–2956. DOI: 10.1111/gcb.13289

[19]

Colman B P, Schimel J P. Drivers of microbial respiration and net N mineralization at the continental scale[J]. Soil Biology & Biochemistry, 2013, 60: 65–76.

[20]

Angers D A, Eriksen-Hamel N S. Full-inversion tillage and organic carbon distribution in soil profiles: A meta-analysis[J]. Soil Science Society of America Journal, 2008, 72(5): 1370–1374. DOI: 10.2136/sssaj2007.0342

[21]

Liu C, Lu M, Cui J, et al. Effects of straw carbon input on carbon dynamics in agricultural soils: A meta-analysis[J]. Global Change Biology, 2014, 20(5): 1366–1381. DOI: 10.1111/gcb.12517

[22]

Feiziene D, Feiza V, Karklins A, et al. After-effects of long-term tillage and residue management on topsoil state in boreal conditions[J]. European Journal of Agronomy, 2018, 94: 12–24. DOI: 10.1016/j.eja.2018.01.003

[23]

Kuhry P, Vitt D H. Fossil carbon/nitrogen ratios as a measure of peat decomposition[J]. Ecology, 1996, 77(1): 271–275. DOI: 10.2307/2265676

[24]

Kirschbaum M U F, Don A, Beare M H, et al. Sequestration of soil carbon by burying it deeper within the profile: A theoretical exploration of three possible mechanisms[J]. Soil Biology and Biochemistry, 2021, 163: 108432. DOI: 10.1016/j.soilbio.2021.108432

[25]

Koga N, Hayashi K, Shimoda S. Differences in CO2 and N2O emission rates following crop residue incorporation with or without field burning: A case study of adzuki bean residue and wheat straw[J]. Soil Science and Plant Nutrition, 2016, 62(1): 52–56. DOI: 10.1080/00380768.2015.1086278

[26]

Liu N, Li Y, Cong P, et al. Depth of straw incorporation significantly alters crop yield, soil organic carbon and total nitrogen in the North China Plain[J]. Soil & Tillage Research, 2021, 205: 104772.

[27]

Dikgwatlhe S B, Chen Z, Lal R, et al. Changes in soil organic carbon and nitrogen as affected by tillage and residue management under wheat–maize cropping system in the North China Plain[J]. Soil & Tillage Research, 2014, 144: 110–118.

[28]

Luo Z, Wang E, Sun O J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments[J]. Agriculture, Ecosystems & Environment, 2010, 139(1): 224–231.

[29]

Turmel M, Speratti A, Baudron F, et al. Crop residue management and soil health: A systems analysis[J]. Agricultural Systems, 2015, 134: 6–16. DOI: 10.1016/j.agsy.2014.05.009

[30] 薛卫杰, 杨艳霞, 王国文, 等. 秸秆还田条件下不同有机肥对土壤养分和冬小麦养分积累的影响[J]. 麦类作物学报, 2017, 37(3): 390–395. Xue W J, Yang Y X, Wang G W, et al. Effect of different organic fertilizers on soil nutrients and nutrient accumulation in winter wheat with straw returning[J]. Journal of Triticeae Crops, 2017, 37(3): 390–395. DOI: 10.7606/j.issn.1009-1041.2017.03.16 [31] 鲁艳红, 廖育林, 聂军, 等. 长期施用氮磷钾肥和石灰对红壤性水稻土酸性特征的影响[J]. 土壤学报, 2016, 53(1): 202–212. Lu Y H, Liao Y L, Nie J, et al. Effect of long-term fertilization and lime application on soil acidity of reddish paddy soil[J]. Acta Pedologica Sinica, 2016, 53(1): 202–212. [32] 张永春. 长期不同施肥对土壤酸化作用的影响研究[D]. 南京: 南京农业大学博士学位论文, 2012.

Zhang Y C. Research of long-term fertilization on soil acidification[D]. Nanjing: PhD Dissertation of Nanjing Agricultural University, 2012.

[33] 黄昌勇, 徐建明. 土壤学[M]. 北京: 中国农业出版社, 2010.

Huang C Y, Xu J M. Soil science[M]. Beijing: China Agriculture Press, 2010.

[34] 邹文秀, 韩晓增, 陆欣春, 等. 肥沃耕层构建对东北黑土区旱地土壤肥力和玉米产量的影响[J]. 应用生态学报, 2020, 31(12): 4134–4146. Zou W X, Han X Z, Lu X C, et al. Effects of the construction of fertile and cultivated upland soil layer on soil fertility and maize yield in black soil region in Northeast China[J]. Chinese Journal of Applied Ecology, 2020, 31(12): 4134–4146. [35]

Pittelkow C M, Liang X, Linquist B A, et al. Productivity limits and potentials of the principles of conservation agriculture[J]. Nature, 2015, 517: 365–368. DOI: 10.1038/nature13809

[36]

Jabro J D, Iversen W M, Stevens W B, et al. Physical and hydraulic properties of a sandy loam soil under zero, shallow and deep tillage practices[J]. Soil & Tillage Research, 2016, 159: 67–72.

相关知识

深耕结合秸秆还田提高作物产量并改善耕层薄化土壤理化性质
有机物料覆盖对果园土壤环境的影响
有机无机肥配施对我国主要粮食作物产量和氮肥利用效率的影响
有机、无机肥配合施用效果的试验研究
浙江省农业农村厅关于发布2022年土壤健康培育十项关键技术的通知
化肥与不同有机物料配施对土壤有机碳组分及土壤水稳性团聚体的影响
有机农业种植中病虫害防治探究
改良土壤的方法有哪些 提升农业生产力的关键措施
有机物料对酸化山核桃林地土壤的改良作用
秸秆还田对农田土壤有机质提升

网址: 有机物料配合深耕混合还田快速提升砂质棕壤农业生产力的效果和机理 https://m.huajiangbk.com/newsview1221700.html

所属分类:花卉
上一篇: 新品丨“益壤” 有机无机复混肥全
下一篇: 混合肥