摘要:
互花米草作为C4植物,具有较强的固碳作用,其生物量大小数据可为评估互花米草的碳汇功能提供重要参数。本文通过收集分析我国互花米草地上和地下生物量研究数据,得到中国滨海湿地互花米草生物量时、空分异特征及相关分析结果:①互花米草的地上生物量7月至10月较高,4、5月最低;地下生物量6月至10月较高,2月至4月最低,即互花米草的地上和地下生物量均在夏秋季较高,春季最低。互花米草生物量的这种季节变化格局可能是由互花米草本身的生命活动规律决定的。②在不同省份、同一省份不同区域和同一区域不同生境,互花米草的生物量均存在差异。互花米草生物量的空间差异可能与潮汐作用、纬度差异、根际土壤微生物作用、种群入侵年限和互花米草种类有关。③江苏的地上生物量低于上海、浙江和福建(上海>浙江>福建>江苏),而地下生物量却最高,此外江苏的地下生物量高于本省的地上生物量。这种生物量分配格局可能是由江苏的生长条件不利造成的,互花米草需要将更多的资源投入到繁殖来适应逆境环境,并且在相同环境条件下,植物可利用的资源是一定的,分配到生殖构件的生物量多,就必然导致分配到营养构件的生物量少。
关键词: 中国 / 滨海湿地 / 互花米草 / 生物量 / 时空差异Abstract:
As C4 plants, Spartina alterniflora has a strong carbon sequestration effect, and its biomass data can provide important parameters for assessing the carbon sink function of S. alterniflora. In this paper, by collecting and analyzing the research data on the aboveground and underground biomass of S. alterniflora in China, the temporal and spatial variation characteristics of S. alterniflora biomass in coastal wetlands of China and the relevant analysis results are obtained as follows: ① The aboveground biomass of S. alterniflora is higher from July to October, and the lowest in April and May; the underground biomass is higher from June to October, and the lowest from February to April, that is, the aboveground and underground biomass of S. alterniflora is higher in summer and autumn, and the lowest in spring. This seasonal variation pattern of S. alterniflora biomass may be determined by the life activity law of S. alterniflora itself. ② The biomass of S. alterniflora is different in different provinces, different regions of the same province and different habitats of the same region. The spatial differences of S. alterniflora biomass may be related to tidal action, latitude differences, rhizosphere soil microbial action, population invasion years and S. alterniflora species. ③The aboveground biomass of Jiangsu is lower than that of Shanghai, Zhejiang and Fujian (Shanghai>Zhejiang>Fujian>Jiangsu), while the underground biomass is the highest. In addition, the underground biomass of Jiangsu is higher than the aboveground biomass of itself. This biomass allocation pattern may be caused by the adverse growth conditions in Jiangsu. S. alterniflora needs to invest more resources in reproduction to adapt to the adverse environment, and under the same environmental conditions, the resources available to plants are certain, more biomass allocated to reproductive components will inevitably lead to less biomass allocated to nutritional components.
图 1 文献筛选与研究流程
Figure 1. Flow chart of literature selection and research
图 2 同一区域在不同月份的地上生物量
注:图2a数据来源于文献[14-18],图2b数据来源于文献[19-22],图2c数据来源于文献[23-26],图2d数据来源于文献[28-30],图2e数据来源于文献[27];黑色线表示数据的标准偏差。
Figure 2. Aboveground biomass of the same region in different months
图 3 同一区域在不同月份的地下生物量(kg·m−2)
注:图 3a数据来源于文献[29],图 3b数据来源于文献[16-18],图 3c数据来源于文献[19-20, 22]。
Figure 3. Underground biomass of the same region in different months (kg·m−2)
图 4 不同省份在同一月份的地上生物量(kg·m−2)
注:图 4a数据来源于文献[5, 15, 17, 22-24, 27-28, 30, 33],图 4b数据来源于文献[14-15, 19, 25, 27, 29, 35, 40, 42],图 4c数据来源于文献[15, 17, 27-28, 30, 34, 36-37, 39, 41],图 4d数据来源于文献[15-17, 19-24, 27, 38, 43];色柱上的数字为互花米草地上生物量具体数据。
Figure 4. Aboveground biomass of different provinces in the same month (kg·m−2)
图 5 同一省份不同区域在同一月份的地上生物量(kg·m−2)
注:图 5a数据来源于文献[14-17, 19-25, 34],图 5b数据来源于文献[38, 40, 42-43],图 5c数据来源于文献[35], 图 5d数据来源于文献[27-30];圆环由内至外依次代表不同月份,江苏为7月至10月,上海为8、10月,浙江为8月,福建为7月至9月。
Figure 5. Aboveground biomass in different regions of the same province in the same month (kg·m−2)
图 6 不同省份在同一月份的地下生物量
注:图6a数据来源于文献[17-18, 29],图 6b数据来源于文献[19-20, 29],图 6c数据来源于文献[26, 29],图 6d数据来源于文献[17, 37, 41],图 6e数据来源于文献[16-17, 19, 22, 43],图 6f数据来源于文献[16-17, 46];黑色线表示数据的标准偏差。
Figure 6. Underground biomass of different provinces in the same month
图 7 同一省份不同区域在同一月份的地下生物量
注:图中数据来源于文献[16-19, 22];黑色线表示数据的标准偏差。
Figure 7. Underground biomass in different regions of the same province in the same month
[1]SHANG L, LI L F, SONG Z P, et al. High genetic diversity with weak phylogeographic structure of the invasive Spartina alterniflora (Poaceae) in China[J]. Frontiers in Plant Science, 2019, 10: 1467. doi: 10.3389/fpls.2019.01467
[2]MENG W, FEAGIN R A, INNOCENTI R A, et al. Invasion and ecological effects of exotic smooth cordgrass Spartina alterniflora in China[J]. Ecological Engineering, 2020, 143: 105670. doi: 10.1016/j.ecoleng.2019.105670
[3]CHEN M M, KE Y H, BAI J H, et al. Monitoring early stage invasion of exotic Spartina alterniflora using deep-learning super-resolution techniques based on multisource high-resolution satellite imagery: a case study in the Yellow River Delta, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 92: 102180. doi: 10.1016/j.jag.2020.102180
[4]CHENG H K, TANG Z R, LUO X Z, et al. Spartina alterniflora-derived porous carbon using as anode material for sodium-ion battery[J]. Science of the Total Environment, 2021, 777: 146120. doi: 10.1016/j.scitotenv.2021.146120
[5] 乔沛阳, 王安东, 谢宝华, 等. 除草剂对黄河三角洲入侵植物互花米草的影响[J]. 生态学报, 2019, 39(15): 5627-5634.QIAO P Y, WANG A D, XIE B H, et al. Effects of herbicides on invasive Spartina alterniflora in the Yellow River Delta[J]. Acta Ecologica Sinica, 2019, 39(15): 5627-5634.
[6]LIU M, MAO D, WANG Z, et al. Rapid Invasion of Spartina alterniflora in the coastal zone of Mainland China: new observations from landsat OLI images[J]. Remote Sensing, 2018, 10(12): 1933. doi: 10.3390/rs10121933
[7]MAO D, LIU M, WANG Z, et al. Rapid invasion of Spartina alterniflora in the coastal zone of Mainland China: spatiotemporal patterns and human prevention[J]. Sensors (Basel), 2019, 19(10): 2308. doi: 10.3390/s19102308
[8]ZHOU W, GONG P, GAO L. A review of carbon forest development in China[J]. Forests, 2017, 8(8): 295. doi: 10.3390/f8080295
[9]CASE M J, JOHNSON B G, BARTOWITZ K J, et al. Forests of the future: climate change impacts and implications for carbon storage in the Pacific Northwest, USA[J]. Forest Ecology and Management, 2021, 482: 118886. doi: 10.1016/j.foreco.2020.118886
[10]TUBIELLO F N, CONCHEDDA G, WANNER N, et al. Carbon emissions and removals from forests: new estimates, 1990–2020[J]. Earth System Science Data, 2021, 13(4): 1681-1691. doi: 10.5194/essd-13-1681-2021
[11]ZHUANG X, ZHANG Y, XIAO A F, et al. Applications of synthetic biotechnology on carbon neutrality research: a review on electrically driven microbial and enzyme engineering[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 826008. doi: 10.3389/fbioe.2022.826008
[12]WANG Q. Invasive Spartina alterniflora: biology, ecology and management[J]. Acta Phytotaxonomica Sinica, 2006, 44(5): 559-588. doi: 10.1360/aps06044
[13]GE Z M, GUO H Q, ZHAO B, et al. Plant invasion impacts on the gross and net primary production of the salt marsh on eastern coast of China: insights from leaf to ecosystem[J]. Journal of Geophysical Research:Biogeosciences, 2015, 120(1): 169-186. doi: 10.1002/2014JG002736
[14] 王维中, 蒋福兴, 赵鸣. 互花米草人工植被生态效益和经济效益的初步研究[J]. 生态学杂志, 1992, 11(5): 14-17.WANG W Z, JIANG F X, ZHAO M. Ecological effect and economic benefit of artificial Spartina alterniflora vegetation—a preliminary study[J]. Chinese Journal of Ecology, 1992, 11(5): 14-17.
[15] 钦佩, 谢民, 周爱堂. 互花米草的初级生产与类黄酮的生成[J]. 生态学报, 1991, 11(4): 293-298. doi: 10.3321/j.issn:1000-0933.1991.04.016QIN P, XIE M, ZHOU A T. The primary production and flavonoids production of Spartina alterniflora[J]. Acta Ecologica Sinica, 1991, 11(4): 293-298. doi: 10.3321/j.issn:1000-0933.1991.04.016
[16] 钦佩, 马连琨, 谢民, 等. Fe、Cu、Mn、Zn在互花米草(Spartina alterniflora)初级生产中的动态研究[J]. 生态学报, 1993, 13(1): 67-74.QIN P, MA L K, XIE M, et al. A study on dynamics of Fe, Cu, Mn, Zn in primary production of Spartina alterniflora[J]. Acta Ecologica Sinica, 1993, 13(1): 67-74.
[17] 钦佩, 谢民, 陈素玲, 等. 苏北滨海废黄河口互花米草人工植被贮能动态[J]. 南京大学学报(自然科学版), 1994, 30(3): 488-493.QIN P, XIE M, CHEN S L, et al. The dynamics of energy content in artificial vegetation of Spartina alterniflora in Binhai County, Jiangsu Province[J]. Journal of Nanjing University (Natural Sciences Edition), 1994, 30(3): 488-493.
[18] 钦佩, 谢民, 仲崇信. 互花米草盐沼矿质元素的迁移变化[J]. 南京大学学报(自然科学版), 1995, 31(1): 90-98.QIN P, XIE M, ZHONG C X. The dynamics of transport and change of mineral elements in salt marsh of Spartina alterniflora[J]. Journal of Nanjing University (Natural Sciences Edition), 1995, 31(1): 90-98.
[19] 冯振兴, 高建华, 陈莲, 等. 互花米草生物量变化对盐沼沉积物有机碳的影响[J]. 生态学报, 2015, 35(7): 2038-2047.FENG Z X, GAO J H, CHEN L, et al. The response of organic carbon content to biomass dynamics in Spartina alterniflora marsh[J]. Acta Ecologica Sinica, 2015, 35(7): 2038-2047.
[20] 陈莲, 高建华, 冯振兴, 等. 重金属在互花米草盐沼湿地中的富集及迁移规律[J]. 南京大学学报(自然科学), 2014, 50(5): 695-705.CHEN L, GAO J H, FENG Z X, et al. The regular pattern of enrichment and migration of heavy metals in S. terniflora marsh[J]. Journal of Nanjing University (Natural Science), 2014, 50(5): 695-705.
[21]CHEN L, GAO J, ZHU Q, et al. Accumulation and output of heavy metals by the invasive plant Spartina alterniflora in a coastal salt marsh[J]. Pedosphere, 2018, 28(6): 884-894. doi: 10.1016/S1002-0160(17)60369-2
[22]ZHOU H X, LIU J E, ZHOU J, et al. Effect of an alien species Spartina alterniflora Loisel on biogeochemical processes of intertidal ecosystem in the Jiangsu coastal region, China[J]. Pedosphere, 2008, 18(1): 77-85. doi: 10.1016/S1002-0160(07)60105-2
[23] 高建华, 杨桂山, 欧维新. 互花米草引种对苏北潮滩湿地TOC、TN和TP分布的影响[J]. 地理研究, 2007, 26(4): 799-808. doi: 10.3321/j.issn:1000-0585.2007.04.017GAO J H, YANG G S, OU W X. The influence after introduction of Spartina alterniflora on the distribution of TOC, TN and TP in the national Yancheng rare birds nature reserve, Jiangsu Province, China[J]. Geographical Research, 2007, 26(4): 799-808. doi: 10.3321/j.issn:1000-0585.2007.04.017
[24] 仲崇庆, 王进欣, 邢伟, 等. 不同植被和水文条件下苏北盐沼土壤TN、TP和OM剖面特征[J]. 北京林业大学学报, 2010, 32(3): 186-190.ZHONG C Q, WANG J X, XING W, et al. Effects of vegetation and hydrological conditions on the profile characteristics of TN, TP and OM in coastal salt marshes in Northern Jiangsu Province[J]. Journal of Beijing Forestry University, 2010, 32(3): 186-190.
[25] 袁俊吉, 项剑, 刘德燕, 等. 互花米草入侵盐沼湿地CH4和N2O排放日变化特征研究[J]. 生态环境学报, 2014, 23(8): 1251-1257.YUAN J J, XIANG J, LIU D Y, et al. Diel variation of CH4 and N2O emissions in the salt marsh with Spartina alterniflora invasion[J]. Ecology and Environmental Sciences, 2014, 23(8): 1251-1257.
[26]ZHOU C, AN S, DENG Z, et al. Sulfur storage changed by exotic Spartina alterniflora in coastal saltmarshes of China[J]. Ecological Engineering, 2009, 35(4): 536-543. doi: 10.1016/j.ecoleng.2008.01.004
[27] 张丽平, 周亚圣, 刘君成, 等. 遮荫对刈割互花米草生物量及渗透调节物质的影响[J]. 西南林业大学学报(自然科学), 2019, 39(4): 142-148.ZHANG L P, ZHOU Y S, LIU J C, et al. Effects of shading on the biomass and osmotic adjustment substances of castrated Spartina alterniflora[J]. Journal of Southwest Forestry University (Natural Sciences), 2019, 39(4): 142-148.
[28] 仝川, 闫宗平, 王维奇, 等. 闽江河口感潮湿地入侵种互花米草甲烷通量及影响因子[J]. 地理科学, 2008, 28(6): 826-832. doi: 10.3969/j.issn.1000-0690.2008.06.020TONG C, YAN Z P, WANG W Q, et al. Methane flux from invasive species (Spartina alterniflora) and influencing factors in the Min River Estuary[J]. Scientia Geographica Sinica, 2008, 28(6): 826-832. doi: 10.3969/j.issn.1000-0690.2008.06.020
[29] 罗美娟, 黄炜娟, 谭芳林, 等. 闽江河口湿地主要植物群落生物量研究[J]. 防护林科技, 2009, 93: 1-3. doi: 10.3969/j.issn.1005-5215.2009.01.001LUO M J, HUANG W J, TAN F L, et al. Biomass of main plant community of estuarine wetland of Minjiang River[J]. Protection Forest Science and Technology, 2009, 93: 1-3. doi: 10.3969/j.issn.1005-5215.2009.01.001
[30]TONG C, WANG W Q, HUANG J F, et al. Invasive alien plants increase CH4 emissions from a subtropical tidal estuarine wetland[J]. Biogeochemistry, 2012, 111(1/3): 677-693.
[31] 陈圆, 曾兆华, 秦晓静, 等. 互花米草移栽种群无性繁殖的月动态[J]. 生物安全学报, 2014, 23(3): 173-177. doi: 10.3969/j.issn.2095-1787.2014.03.006CHEN Y, ZENG Z H, QIN X J, et al. Monthly variation of asexual reproduction of Spartina alterniflora (Loisel)[J]. Journal of Biosafety, 2014, 23(3): 173-177. doi: 10.3969/j.issn.2095-1787.2014.03.006
[32] 张林海, 曾从盛, 仝川. 闽江河口湿地芦苇和互花米草生物量季节动态研究[J]. 亚热带资源与环境学报, 2008(2): 25-33. doi: 10.3969/j.issn.1673-7105.2008.02.004ZHANG L H, ZENG C S, TONG C. Study on biomass dynamics of phragmites australis and Spartina alterniflora in the wetlands of Minjiang River Estuary[J]. Journal of Subtropical Resources and Environment, 2008(2): 25-33. doi: 10.3969/j.issn.1673-7105.2008.02.004
[33] 布乃顺, 王坤, 侯玉乐, 等. 半月周期的潮汐对滨海湿地土壤理化性质的影响[J]. 长江流域资源与环境, 2015, 24(11): 1898-1905.BU N S, WANG K, HOU Y L, et al. Effects of semi-lunar tidal cycling on soil physical and chemical properties in coastal wetlands[J]. Resources and Environment in the Yangtze Basin, 2015, 24(11): 1898-1905.
[34] 王长永, 仲崇信, 钦佩. 米草光合作用速率季节变化及其对初级生产的影响[J]. 农村生态环境, 1994, 10(3): 14-17.WANG C Y, ZHONG C X, QIN P. Seasonal changes of photosynthesis rate and its effect on primary production for Spartina[J]. Rural Eco-Environment, 1994, 10(3): 14-17.
[35] 陆琳莹, 邵学新, 杨慧, 等. 浙江滨海湿地互花米草生长性状对土壤化学因子的响应[J]. 林业科学研究, 2020, 33(5): 177-183.LU L Y, SHAO X X, YANG H, et al. Response of Spartina alterniflora growth to soil chemical properties in coastal wetland of Zhejiang[J]. Forest Research, 2020, 33(5): 177-183.
[36]SHAO X, WU M, GU B, et al. Nutrient retention in plant biomass and sediments from the salt marsh in Hangzhou Bay Estuary, China[J]. Environmental Science and Pollution Research, 2013, 20(9): 6382-6391. doi: 10.1007/s11356-013-1698-6
[37] 陈中义, 李博, 陈家宽. 互花米草与海三棱藨草的生长特征和相对竞争能力[J]. 生物多样性, 2005, 13(2): 130-136. doi: 10.1360/biodiv.040122CHEN Z Y, LI B, CHEN J K. Some growth characteristics and relative competitive ability of invasive Spartina alterniflora and native Scirpusmariqueter[J]. Biodiversity Science, 2005, 13(2): 130-136. doi: 10.1360/biodiv.040122
[38] 全为民, 沈盎绿, 钱蓓蕾, 等. 长江口盐沼植物对营养盐和重金属的吸收、分布与滞留研究[J]. 海洋环境科学, 2007, 26(1): 14-18.QUAN W M, SHEN A L, QIAN B L, et al. Study on Uptake, distribution and sequestration of nutrients and heavy metals by saltmarsh plants in Changjiang Estuary[J]. Marine Environmental Science, 2007, 26(1): 14-18.
[39] 李华, 杨世伦, YSEBAERT T, 等. 长江口潮间带淤泥质沉积物粒径空间分异机制[J]. 中国环境科学, 2008, 28(2): 178-182. doi: 10.3321/j.issn:1000-6923.2008.02.017LI H, YANG S L, YSEBAERT T, et al. Spatial difference mechanism of sludge sediment grain size in tidal wetlands of Yangtze Delta[J]. China Environmental Science, 2008, 28(2): 178-182. doi: 10.3321/j.issn:1000-6923.2008.02.017
[40]QUAN W M, HAN J D, SHEN A L, et al. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River Estuary, China[J]. Marine Environmental Research, 2007, 64(1): 21-37. doi: 10.1016/j.marenvres.2006.12.005
[41]YSEBAERT T, YANG S L, ZHANG L, et al. Wave attenuation by two contrasting ecosystem engineering salt marsh macrophytes in the intertidal pioneer zone[J]. Wetlands, 2011, 31(6): 1043-1054. doi: 10.1007/s13157-011-0240-1
[42]CHEN H, LI B, HU J, et al. Effects of Spartina alterniflora invasion on benthic nematode communities in the Yangtze Estuary[J]. Marine Ecology-Progress Series, 2007, 336: 99-110. doi: 10.3354/meps336099
[43] 王琰, 童春富. 长江口芦苇和互花米草盐沼湿地蟹类洞穴分布特征及主要影响因子[J]. 生态学报, 2017, 37(16): 5504-5513.WANG Y, TONG C F. Distribution characteristics of crab burrows in Phragmites australis and Spartina alterniflora salt marshes in the Yangtze Estuary and their influencing factors[J]. Acta Ecologica Sinica, 2017, 37(16): 5504-5513.
[44] 宫乐, 张蕊, 李瑞利, 等. 天津滨海滩涂互花米草群落动态的研究[J]. 南开大学学报(自然科学版), 2016, 49(2): 43-51.GONG L, ZHANG R, LI R L, et al. Study on community dynamics of Spartina alterniflora at the intertidal zone in Tianjin[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2016, 49(2): 43-51.
[45] 覃盈盈, 蒋潇潇, 李峰, 等. 互花米草在不同生境中的形态可塑性与生物量分配[J]. 海洋环境科学, 2009, 28(6): 657-659,667.QIN Y Y, JIANG X X, LI F, et al. Morphological plasticity and biomass allocation of Spartina alterniflora lossel in different habitats[J]. Marine Environmental Science, 2009, 28(6): 657-659,667.
[46] 李加林, 许继琴, 张殿发, 等. 杭州湾南岸互花米草盐沼生态系统服务价值评估[J]. 地域研究与开发, 2005, 24(5): 58-62,80.LI J L, XU J Q, ZHANG D F, et al. Function of Spartina alterniflora salt march and its eco-economic value in south coast of Hangzhou Bay[J]. Areal Research and Development, 2005, 24(5): 58-62,80.
[47] 任丽娟, 王国祥, 仇乐, 等. 江苏潮滩湿地不同生境互花米草形态与生物量分配特征[J]. 生态与农村环境学报, 2010, 26(3): 220-226. doi: 10.3969/j.issn.1673-4831.2010.03.006REN L J, WANG G X, QIU L, et al. Morphology and biomass distribution of Spartina alterniflora growing in different tidal flat habitats in Jiangsu[J]. Journal of Ecology and Rural Environment, 2010, 26(3): 220-226. doi: 10.3969/j.issn.1673-4831.2010.03.006
[48] 谭勇, 何东进, 游巍斌, 等. 闽东滨海湿地入侵种互花米草表型可塑性及生物量分配对潮位梯度的响应[J]. 应用与环境生物学报, 2014, 20(5): 863-868.TAN Y, HE D J, YOU W B, et al. Spartina alterniflora morphological plasticity and biomass allocation in response to tidal gradient change in Mindong coastal wetlands[J]. Journal of Applied & Environmental Biology, 2014, 20(5): 863-868.
[49] 栾兆擎, 闫丹丹, 薛媛媛, 等. 滨海湿地互花米草入侵的生态水文学机制研究进展[J]. 农业资源与环境学报, 2020, 37(4): 469-476. doi: 10.13254/j.jare.2019.0124LUAN Z Q, YAN D D, XUE Y Y, et al. Research progress on the ecohydrological mechanisms of Spartina alterniflora invasion in coastal wetlands[J]. Journal of Agricultural Resources and Environment, 2020, 37(4): 469-476. doi: 10.13254/j.jare.2019.0124
[50]LIU W, MAUNG-DOUGLASS K, STRONG D R, et al. Geographical variation in vegetative growth and sexual reproduction of the invasive Spartina alterniflora in China[J]. Journal of Ecology, 2016, 104(1): 173-181. doi: 10.1111/1365-2745.12487
[51]WALKER J B, BIJAK, A L, BLUM, L. Diversity and clonal structure of Spartina alterniflora in a Virginia marsh[J]. Northeastern Naturalist, 2021, 28(3): 357-370.
[52]LUMIBAO C Y, BERNIK B M, FORMEL S K, et al. Rhizosphere microbial communities reflect genotypic and trait variation in a salt marsh ecosystem engineer[J]. American Journal of Botany, 2020, 107(6): 941-949. doi: 10.1002/ajb2.1497
[53]ZHENG J, LI J, LAN Y, et al. Effects of Spartina alterniflora invasion on Kandelia candel rhizospheric bacterial community as determined by high-throughput sequencing analysis[J]. Journal of Soils and Sediments, 2019, 19(1): 332-344. doi: 10.1007/s11368-018-2002-7
[54]BLEDSOE R AND BOOPATHY R. Bioaugmentation of microbes to restore coastal wetland plants to protect land from coastal erosion[J]. International Biodeterioration & Biodegradation, 2016, 113: 155-160.
[55] 金宝石, 高灯州, 杨平, 等. 闽江河口区互花米草入侵不同年限下湿地土壤有机碳变化[J]. 自然资源学报, 2016, 31(4): 608-619. doi: 10.11849/zrzyxb.20150425JIN B S, GAO D Z, YANG P, et al. Change of soil organic carbon with different years of Spartina alterniflora invasion in wetlands of Minjiang River Estuary[J]. Journal of Natural Resources, 2016, 31(4): 608-619. doi: 10.11849/zrzyxb.20150425
[56] 路峰, 王昕. 互花米草引种及遗传多样性研究进展[J]. 山东林业科技, 2017, 47(6): 107-112. doi: 10.3969/j.issn.1002-2724.2017.06.029LU F, WANG X. General situation of the introduction and genetic diversity of Spartina alterniflora[J]. Shandong Forestry Science and Technology, 2017, 47(6): 107-112. doi: 10.3969/j.issn.1002-2724.2017.06.029
[57] 徐伟伟, 王国祥, 刘金娥, 等. 苏北海滨湿地互花米草地上生物量动态[J]. 海洋科学进展, 2012, 30(1): 132-140. doi: 10.3969/j.issn.1671-6647.2012.01.017XU W W, WANG G X, LIU J E, et al. Above-ground Biomass Dynamics of Spartina Alterniflora in the coastal wetland of North Jiangsu[J]. Advances in Marine Science, 2012, 30(1): 132-140. doi: 10.3969/j.issn.1671-6647.2012.01.017
相关知识
中国滨海互花米草湿地土壤有机碳时空变化及其影响因素
入侵种互花米草影响我国滨海湿地土壤生态系统的研究进展
滨海滩涂湿地现状及互花米草的生态机制研究进展
基于无人机遥感和现场观测的入侵植物互花米草生长动态研究
互花米草入侵对湿地土壤微生物群落的影响
不同建群时间下互花米草种群生长及生物量分配
互花米草湿地碳储量及碳汇研究进展
沿海滩涂湿地的烦恼——互花米草
淡水脉冲输入对互花米草(Spartina alterniflora)生长和繁殖的影响
江苏淤泥质潮滩湿地互花米草扩张对湿地景观的影响
网址: 中国滨海湿地互花米草生物量时空差异的综述 https://m.huajiangbk.com/newsview1236248.html
上一篇: 6款鲜榨果汁,营养又美味! |
下一篇: 我校喀斯特研究院熊康宁教授团队在 |