首页 > 分享 > 高浓度汞污染土壤低温工程性修复复垦的可行性

高浓度汞污染土壤低温工程性修复复垦的可行性

摘要:低温热解技术修复高浓度汞污染土壤(≥100 mg·kg-1)工程除汞效果可达70%以上,仍残留20%~30%的惰性汞,是否对农作物安全存在一定风险仍属未知。为此,以低温热解工程性修复前的高浓度汞污染农田土壤为对照,研究修复后土壤在原位大田条件下残留汞的形态变化及对几种常见作物生物产量、质量及汞在植物组织间迁移的影响。结果表明:低温热解过程未对土壤肥力造成影响,经低温热解修复后土壤中有机结合态汞降低64.07%,残渣态汞降低56.38%;高浓度汞污染抑制了作物生长,修复后土壤耕种作物生长状况得以明显改善,作物产量提高了2~3倍;所研究作物可食部分土豆肉、玉米粒及稻米,汞含量分别降低了51.2%、43.8% 和53.79%;汞在植株中的分布情况为:根 > 叶 > 茎,残留汞对植株根系的胁迫最为严重,且植株的根和叶汞含量,相比修复前明显降低了2~5倍。

Abstract:Low-temperature pyrolysis technology was used to remedy high levels of mercury-contaminated soil (≥ 100 mg·kg-1). More than 70% of mercury was removed from the contaminated soil by the technology. However,20% to 30% of mercury still remained in the soil. A field planting experiment was conducted to investigate the effects of residual mercury on crop growth,economic yield,and quality. Mercury transportation between plant tissues were also investigated. The results can be summarized as follows. First, the low-temperature pyrolysis technology does not reduce soil fertility. The organically bound fraction and the residual fraction were reduced by 64.07% and 56.38%,respectively. Second,the low-temperature pyrolysis technology had no damage on soil fertility. Third,high levels of mercury pollution inhibited the growth of crops. After the low-temperature pyrolysis treatment,there was a significant improvement in plant height and the economic yield increased from 2 to 3 times. In addition,the mercury content in potatoes,corn,and rice reduced by 51.2%,43.8%,and 51.2%,respectively. Finally,the mercury distribution in the body of the three crops were in the following order:root>leaf>stem. The mercury content in root and leaf significantly decreased (2 to 5 times) after the treatment.

[1]方凤满,王启超.大气-水-土壤界面汞交换研究方法现状与进展[J].农业环境保护,2002,21(4):381-383 [2]李铭红,李侠,宋瑞生,等.受污农田中农作物对重金属镉的富集特征研究[J].中国生态农业学报,2008,16(3):675-679 [3]金海燕,奚涛,时唯伟,等.镉胁迫对矮生四季豆种子萌发和幼苗生长发育的影响[J].中国农学通报,2009,25(1):119-124 [4]谷巍,施国新,张超英,等.Hg2+、Cd2+和 Cu2+对菹草光合系统及保护酶系统的毒害作用[J].植物生理与分子生物学学报,2002,28(1):69-74 [5]HORVAT M,NOLDE N,FAJON V,et al.Total mercury,methylmercury and selenium in mercury polluted areas in the province Guizhou,China[J].Science of the Total Environment,2003,304(1/2/3):231-256 [6]赖莉.低温热解法修复贵州清镇地区汞重污染土壤[J].化学工程与装备,2015(9):248-253 [7]瞿丽雅,付舜珍,刘鹂.汞污染土壤的改善研究[J].贵州师范大学学报(自然科学版),2004,22(2):49-51 [8]包正铎,王建旭,冯新斌,等.贵州万山汞矿区污染土壤中汞的形态分布特征[J].生态学杂志,2011,30(5):907- 913 [9]黄昌勇.土壤学[M].北京:中国农业出版社,2000:32-33 [10]张新英,李发生,许端平,等.热解吸对土壤中POPs农药的去除及土壤理化性质的影响[J].环境工程学报,2014,6(6):1381-1386 [11]刘清,王子健.重金属形态与生物毒性及生物有效性关系的研究进展[J].环境科学,1996,17(1):89-92 [12]王学锋,杨艳琴.土壤-植物系统重金属形态分析和生物有效性研究进展[J].化工环保,2004,24(1):24-28 [13]李宇庆,陈玲,仇雁翎,等.上海化学工业区土壤重金属元素形态分析[J].生态环境,2004,13(2):154-155 [14]温丽瑗,郎春燕,张嘉敏.冷蒸气原子荧光光谱法测定稻田土壤中汞的不同形态[J].理化检验:化学分册,2013,49(8):920-923 [15]化玉谨,张敏英,陈明,等.流炼金区土壤中汞形态分布及其生物有效性[J].环境化学,2015,34(2):234-240 [16]李永华,杨林生,李海蓉,等.湘黔汞矿区土壤汞的化学形态及污染特征[J].环境科学,2007,28(3):654-658 [17]黄吟啸,林瞬华,姚依群,等.植物对汞的吸收和反应[J].植物学通报,1983,1(1):47-50 [18]GODBOLD D L. Mercury-induced root damage in spruce seedlings[J]. Water Air Pollution,1991,56:823-831 [19]王定勇,牟树森,青长乐.大气汞对土壤-植物系统汞累积的影响研究[J].环境科学学报,1998,18(2):194-198 [20]李树举,杨丹,王素华,等.富硒马铃薯研究进展[J].中国马铃薯,2014,28(6):367-371 [21]邢海峰,高炳德,樊明寿,等.马铃薯硒素吸收分配规律及硒肥效应研究[J].华北农学报,2012,27(6):213-218 [22]杜式华,于志洁.汞与硒在植物体内的相互作用[J].环境科学,1987,8(6):43-47 [23]王丽鑫,胡晓荣,谭智勇.生物体内汞与硒的相互作用[J].重庆环境科学,2002,24(2):73-75 [24]EL-BEGEARMI M M,SUNDE M L,GANTER H E.A mutual protective effect of mercury and selenium in Japanese quail[J].Poultry Science,1977,56(1):313-322 [25]高大翔,郝建朝,李子芳,等.汞胁迫对水稻生长及幼苗生理生化的影响[J].农业环境科学学报,2008,27(1):58-61 [26]维新.农业环境保护[M]. 北京:中国农业出版社,1993:139-140 [27]王明新,陈亚慧,白雪,等.孔雀草对镉胁迫的响应及积累与分布特征[J].环境化学,2014,33(11):1978-1984 [28]STOEVA N,BEROVA M,ZLATEV Z.Physiological response of maize to arsenic contamination[J].Biologia Plantarum,2004,47:449-452 [29]刘建新,赵国林,王益民.Cd、Zn复合胁迫对玉米幼苗膜脂过氧化和抗氧化酶系统的影响[J].农业环境科学学报,2006,25(1):54-58 [30]唐东民,伍钧,唐勇,等.重金属胁迫对植物的毒害及其抗性机理研究进展[J].四川环境,2008,27(5):79-83 [31]李锋民,熊治廷,王狄,等.铜铁铅单一及复合污染对铜草幼苗生长的影响[J].农业环境保护,2001,20(2):71-73

Created with Highcharts 5.0.7

访问量

Chart context menu

近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2023-102023-112023-122024-012024-022024-032024-042024-052024-062024-072024-082024-090Highcharts.com

Created with Highcharts 5.0.7

Chart context menu

访问类别分布

DOWNLOAD: 2.9 %DOWNLOAD: 2.9 %FULLTEXT: 86.9 %FULLTEXT: 86.9 %META: 10.2 %META: 10.2 %DOWNLOADFULLTEXTMETAHighcharts.com

Created with Highcharts 5.0.7

Chart context menu

访问地区分布

其他: 84.0 %其他: 84.0 %Ashburn: 2.0 %Ashburn: 2.0 %Beijing: 3.8 %Beijing: 3.8 %Kunshan: 0.3 %Kunshan: 0.3 %Montreal: 0.3 %Montreal: 0.3 %Newark: 0.9 %Newark: 0.9 %Shanghai: 0.6 %Shanghai: 0.6 %Shijiazhuang: 0.6 %Shijiazhuang: 0.6 %Wuhan: 0.6 %Wuhan: 0.6 %XX: 5.2 %XX: 5.2 %Yuncheng: 0.3 %Yuncheng: 0.3 %济南: 0.3 %济南: 0.3 %深圳: 0.9 %深圳: 0.9 %荆州: 0.3 %荆州: 0.3 %其他AshburnBeijingKunshanMontrealNewarkShanghaiShijiazhuangWuhanXXYuncheng济南深圳荆州Highcharts.com

相关知识

重金属污染土壤的花卉植物修复研究进展
镍污染土壤修复技术研究进展
浅谈土壤重金属污染治理和生态修复
微生物技术在土壤重金属污染修复中的应用研究进展
汞污染对土壤微生物组的长期和短期影响
【技术前沿】镍污染土壤修复技术研究进展
低温石油烃降解菌的筛选及其对石油污染土壤的生物修复研究
土壤修复技术介绍——植物修复技术
土壤修复与改良利用的生物技术研究进展
微生物在污染土壤修复中的应用与展望

网址: 高浓度汞污染土壤低温工程性修复复垦的可行性 https://m.huajiangbk.com/newsview124245.html

所属分类:花卉
上一篇: 土壤修复气味抑制剂
下一篇: 抑制玉蝉花愈伤组织增殖过程中内生