首页 > 分享 > 启动磷肥配合追施硫酸铵的根际调控技术提高膜下滴灌棉花磷肥效率和产量

启动磷肥配合追施硫酸铵的根际调控技术提高膜下滴灌棉花磷肥效率和产量

摘要:

目的

针对新疆膜下滴灌棉花生产中磷肥投入过量、利用效率低、成本高等问题,探讨通过调整磷肥施用时间和增施铵态氮肥来增强棉花根际土壤供磷强度,提高磷肥吸收量,降低磷肥损失率,实现棉花的增产增收和磷肥增效。

方法

新疆主要棉花产区石河子、昌吉和农十师一八四团磷肥投入高于衡量监控推荐施肥量的26%~111%,玛纳斯县北五岔和六户地磷肥投入超出2.32~2.92倍, 2020年在以上5个棉花生产区开展了田间对比试验。对照为各试验区棉花肥料习惯施用量和施用方法(CK),处理采用根际调控技术(RM)。RM技术根据目标产量确定磷肥用量,随出苗水滴施少量磷酸一铵与硫酸铵作为启动肥,在蕾期、花铃期集中滴施硫酸铵。棉花收获期,测定棉花产量及其构成因素,分析棉花养分吸收量、氮肥和磷肥偏生产力、磷肥盈余量,计算植棉效益。

结果

5个试验点RM处理和对照皮棉平均产量分别为3263 kg/hm2和3292 kg/hm2,二者之间无显著差异,均达到了高产水平。RM处理棉花产量构成要素、植株各器官生物量分配以及氮、磷含量与CK也均无显著差异,但RM处理的磷肥偏生产力较CK显著提高了81.3%,磷盈余量平均降低了74.9%,昌吉试验点由于不基施磷肥,RM处理的磷盈余仅为P 3.6 kg/hm2。皮棉目标产量为3.1~3.5 t/hm2时,RM处理氮肥平均减施了16.6%,磷肥减施了56.5%,氮磷肥料成本降低了40.7%,节省2082元/hm2。5个试验点RM处理的棉花净收益平均比CK增加了1845元/hm2。在肥料投入高的北五岔和六户地试验点,氮、磷肥成本分别降低3993、4464元/hm2,净收益增加量分别达到2931、4367元/hm2。

结论

在新疆主要植棉区采用根际调控技术,在确保棉花高产的同时,较习惯施肥技术减少了一半以上的磷肥投入,农田土壤磷输入输出基本平衡,植棉效益大幅增加,是新疆棉花施肥管理的良好措施。

Abstract:

Objective

Excessive phosphorus (P) fertilizer application is common in the cotton production of Xinjiang, causing low P efficiencies and low benefit of cotton production. We established a rhizosphere management technology to reduce the P fertilizer input and maintain the high yield of cotton at the same time.

Methods

In the five main cotton (Gossypium hirsutum) production areas inXinjiang, the phosphorous application amounts in Shihezi, Changji, and 184 tuan were 26%–111% beyond the recommondation, and in Beiwucha and Liuhudi were even 2.32 and 2.92 times of the recommondation. Comparison field experiments were employed in the five cotton production areas in 2020, taking the conventional P fertilizer practice as control (CK), and the rhizosphere management as treatment (RM). The core of the RM was determing P input by the cotton yield-target recommendation, most P fertilizer was basal applied and a certain amount of P and ammonium sulfate (AS) was applied before germination of cotton as starter fertilizer, and AS was topdressed with drip irrigation at bud and boll stage of cotton to induce rhizosphere acidification. The lint yield, and biomass of the organs were weighed at harvest, the N and P contents in the organs were analyzed, and the partial factor productivity of N (PFPN) and P (PFPP) fertilizer, P surplus and earnings were calculated, respectively.

Results

RM treatments were recorded similar lint yields (3263 kg/hm2) to CK (3292 kg/hm2), without significant impaction on the aboveground biomass distribution, N and P uptake, and seed cotton P content, thereby increased PFPP by 81.3%. RM treatment reduced P surplus by 74.9% on average, the P surplus was as low as 3.6 kg/hm2 under RM treatment in experimental site Changji where no basal P fertilizer was applied. At the target lint yield level of 3.1–3.5 t/hm2, RM treatment reduced 16.6% of N and 56.5% of P fertilizer input, thus decreased N and P fertilizer cost by 40.7%, saving 2082 yuan/hm2, and increased net income by 1845 yuan/hm2. In the high fertilizer input sites Beiwucha and Liuhudi, RM treatment reduced N and P fertilizer cost by 3993, and 4464 yuan/hm2, and increased the net income by 2931 and 4367 yuan/hm2, respectively.

Conclusions

The rhizosphere management technology reduced more than half of the total P input while kept the high cotton lint yield, so increased the P fertilizer efficiency and decreased P surplus greatly. The cotton net profit was increased significantly as the decrease of fertilizer cost. So, the rhizosphere management technology is recommended in the nutrient management of cotton production in Xinjiang.

图  1   启动磷肥配合硫酸铵诱导根际酸化抑盐和促进棉花活化吸收养分、提高养分利用效率的机制[17−21]

Figure  1.   The process of start P fertilizer combined with ammonium sulfate induces rhizosphere acidification, enhances cotton resistant to salt stress, and improve P absorption and P efficiency[17−21]

图  2   不同试验点常规施肥与根际调控技术的皮棉产量

注:CK—常规施肥;RM—启动磷肥配合追施硫酸铵的根际调控技术。皮棉产量为平均值±标准误。ns和*分别表示CK和RM处理间差异不显著和在0.05水平差异显著。

Figure  2.   Lint cotton yields under conventional and rhizosphere management treatments at the five experimental sites

Note: CK—Conventional treatment; RM—Rhizosphere management technology at the core of start P fertilizer and ammonium sulfate topdressing. The lint cotton yield is expressed as mean±SE. ns and * above the bars indicate no significant difference between CK and RM treatments and significant difference at the 0.05 level.

图  3   常规施肥与根际调控技术下的棉花地上部吸氮量(A)和氮肥偏生产力(B)

注:CK—常规施肥;RM—启动磷肥配合追施硫酸铵的根际调控技术。图中数据为平均值±标准误,柱上ns和*分别表示同一试验点CK和RM处理间差异不显著和在0.05水平显著。

Figure  3.   Shoot N uptake (A) of cotton and partial productivity of N fertilizer (B) under conventional and rhizosphere management

Note: CK—Conventional fertilization; RM—Rhizosphere management technology at the core of start P fertilizer and ammonium sulfate topdressing. The data were mean±SE; ns and * above the bars indicate no significant difference between CK and RM and significant difference at the 0.05 level.

图  4   常规施肥与根际调控技术下棉花对磷素的吸收和利用

注:CK—常规施肥;RM—启动磷肥配合追施硫酸铵的根际调控技术。图中数据为平均值±标准误,柱上ns和*分别表示CK和RM间差异不显著和在0.05水平显著。

Figure  4.   P uptake and utilization by cotton under conventional fertilization and rhizosphere management technology

Note: CK—Conventional fertilization; RM—Rhizosphere management technology at the core of start P fertilizer and ammonium sulfate topdressing. The data are mean±SE; ns and * above the bars indicate no significant difference between CK and RM and significant difference at the 0.05 level, respectively.

表  1   各试验点氮、磷养分总量及在基肥和10次灌溉施肥中的分配量 (kg/hm2)

Table  1   Total fertilizer N and P inputs and the allocation in basal application and 10 fertilgations at the five experimental sites

地点
Site 处理
Treatment 养分
Nutrient 肥料
Fertilizer 基肥
Base-fertilizer 1 2 3 4 5 6 7 8 9 10 总量
Total 石河子
Shihezi CK N Urea 0 15.7 35.3 25.0 32.0 25.0 32.0 30.0 30.0 0 0 225.0 P MAP 0 0 17.5 0 17.5 0 0 17.5 0 0 0 52.4 RM N Urea 0 7.2 35.3 25.0 0 25.0 0 30.0 30.0 0 0 225.0 AS 0 8.5 0 0 32.0 0 32.0 0 0 0 0 P MAP 0 26.2 13.1 0 0 0 0 0 0 0 0 39.3 昌吉
Changji
CK N Urea 0 0 16.8 26.7 29.7 29.7 31.6 30.6 6.9 0 0 172.0 P MKP 0 6.8 3.9 10.0 11.8 11.8 11.8 10.0 0.0 0 0 66.2 RM N Urea 0 0 29.5 34.0 0 30.0 0 30.0 30.0 0 0 225.0 AS 0 7.5 0 0 32.0 0 32.0 0 0 0 0 P MKP 0 6.8 19.7 12.8 0 0 0 0 0 0 0 39.3 一八四团
184 Tuan CK N Urea 0 0 27.6 27.6 34.5 34.5 34.5 27.6 34.5 27.5 31.0 279.3 P TSP 60.3 0 0 0 0 0 0 0 0 0 0 110.8 MKP 0 0 0 0 10.6 0 10.6 8.7 0 0 0 APP 0 0 6.9 6.9 0 6.9 0 0 0 0 0 RM N Urea 0 0 33.0 37.0 0 35.0 0 35.0 35.0 30.0 7.0 283.5 AS 0 7.5 0 0 32.0 0 32.0 0 0 0 0 P TSP 60.3 0 0 0 0 0 0 0 0 0 0 60.3 六户地
Liuhudi CK N Urea 27.0 2.6 30.0 32.9 40.7 40.7 47.6 40.3 38.1 38.9 0 338.8 P TSP 37 0 0 0 0 0 0 0 0 0 0 205.5 DAP 30.1 0 0 0 0 0 0 0 0 0 0 UP 0 2.9 0 0 0 0 0 0 0 0 0 MAP 0 0 10.6 13.6 20.4 20.4 20.4 21.0 17.6 11.5 0 RM N Urea 27.0 0 9.5 25.0 0 32.0 0 30.0 30.0 0 0 225.0 AS 0 7.5 0 0 32.0 0 32.0 0 0 0 0 P TSP 37 0 0 0 0 0 0 0 0 0 0 67.1 DAP 30.1 0 0 0 0 0 0 0 0 0 0 北五岔
Beiwucha CK N Urea 30.0 0 30.6 30.6 43.1 48.2 41.3 51.3 39.5 32.6 17.3 364.5 P CF 52.4 0 0 0 0 0 0 0 0 0 0 174.1 MAP 0 0 14.8 18.2 0 0 0 0 0 7.4 3.9 MKP 0 6.8 0 0 0 0 0 0 0 0 0 DAP 0 0 0 0 15.3 18.2 11.4 18.3 7.4 0 0 RM N Urea 30.0 0 14.4 25.0 0 30.0 0 30.0 30.0 0 0 225.0 AS 0 1.6 0 0 32.0 0 32.0 0 0 0 0 P CF 52.4 0 0 0 0 0 0 0 0 0 0 59.2 MKP 0 6.8 0 0 0 0 0 0 0 0 0 注:所有处理中尿素 (Urea) 氮投入包含磷肥和复合肥中的N。CK—常规施肥;RM—启动磷肥配合追施硫酸铵的根际调控技术。Urea—尿素;AS—硫酸铵;APP—聚磷酸铵;DAP—磷酸二铵;MAP—磷酸一铵;MKP—磷酸二氢钾;TSP—重过磷酸钙;UP—磷酸脲;CF—复合肥 (N–P2O5–K2O=10–40–0)。第一次灌溉在播种后,为出苗前,余下的9次均为出苗后。
Note: The N input includes the N from fertilizers apart from urea in CK and RM treatment across five study sites. CK—Conventional treatment; RM—Rhizosphere management technology at the core of starter P fertilizer and ammonium sulfate topdressing. AS—Ammonium sulphate; APP—Ammonium polyphosphate; DAP—Diammonium phosphate; MAP—Monoammonium phosphate; MKP— Potassium phosphate monobasic; TSP—Triple superphosphate; UP—Urea phosphate; CF—Compound fertilizer (N-P2O5-K2O=10-40-0). The first irrigation was carried out after sowing, before emergence, the left 9 irrigations were all during plant growth.

表  2   试验区土壤主要理化性质

Table  2   Soil properties in the five experimental sites

地点
Site 处理
Treatment 有机质 (g/kg)
Organic matter 全氮 (g/kg)
Total N 有效磷 (mg/kg)
Olsen-P 速效钾 (mg/kg)
Available K 电导率 (μs/cm)
Electrical conductivity 石河子
Shihezi CK 14.3±1.0 1.0±0.1 36.5±8.7 379±15 269±54 RM 13.8±0.2 0.9±0.0 29.0±6.5 405±22 271±78 昌吉
Changji CK 19.2±1.4 a 0.8±0.1 9.5±1.1 272±16 261±35 RM 13.0±3.5 b 0.7±0.1 9.0±1.5 223±54 794±474 一八四团
184 Tuan CK 12.0±2.6 0.5±0.1 b 12.2±3.2 147±4 b 693±158 a RM 12.1±4.7 0.6±0.1 a 14.9±2.7 155±3 a 312±126 b 六户地
Liuhudi CK 6.6±2.1 b 0.4±0.2 26.1±5.7 120±10 b 450±296 RM 13.1±1.7 a 0.7±0.1 19.0±3.5 167±5 a 419±175 北五岔
Beiwucha CK 13.5±0.9 0.7±0.0 25.1±2.9 315±16 348±49 RM 13.4±1.4 0.7±0.1 29.3±8.3 311±34 417±252 注:CK—常规施肥;RM—启动磷肥配合追施硫酸铵的根际调控技术。同列数据后不同小写字母表示CK和RM处理间差异显著 (P<0.05)。
Note: CK—Conventional treatment; RM—Rhizosphere management technology at the core of starter P fertilizer and ammonium sulfate topdressing. Different lowercase letters after data in a column indicate significant difference between CK and RM treatments (P<0.05).

表  3   不同试验点常规施肥与根际调控技术的棉花产量构成要素

Table  3   Cotton yield components under conventional and rhizosphere management treatmentsin the five experimental sites

地点
Site 处理
Treatment 密度 (×104/hm2)
Plant density 单株铃数
Boll number per plant 单铃重 (g)
Single boll weight 衣分 (%)
Lint percent 石河子 Shihezi CK 19.40±1.05 6.9±0.5 5.6±0.2 44.9±0.6 RM 19.55±0.50 6.7±0.3 5.4±0.1 44.6±0.1 昌吉 Changji CK 21.25±0.67 6.4±0.5 5.8±0.2 45.6±0.3 RM 20.10±0.60 6.5±0.2 6.0±0.1 45.4±0.3 一八四团 184 Tuan CK 25.10±0.53 5.0±0.3 5.9±0.1 44.2±0.3 RM 24.50±0.63 5.5±0.3 5.9±0.1 44.0±0.4 六户地 Liuhudi CK 19.10±0.50 5.9±0.2 5.5±0.7 43.5±0.3 RM 19.15±0.18 6.1±0.1 5.1±0.3 43.3±0.7 北五岔 Beiwucha CK 21.35±1.54 5.9±0.8 6.3±0.1 45.7±0.2 RM 20.45±1.01 6.6±0.3 6.3±0.2 45.6±0.3 平均 Average CK 21.20±2.50 a 6.0±0.7 a 5.8±0.4 a 44.8±0.9 a RM 20.80±2.10 a 6.2±0.5 a 5.7±0.5 a 44.6±0.9 a 注:CK—常规施肥;RM—启动磷肥配合追施硫酸铵的根际调控技术。同列数据后不同小写字母表示CK和RM处理间差异显著 (P<0.05)。
Note: CK—Conventional fertilization; RM—Rhizosphere management technology at the core of start P fertilizer and ammonium sulfate topdressing. Different lower-case letters after data in a column indicate significant difference between CK and RM treatment (P<0.05).

表  4   常规施肥与根际调控技术下棉花各部位生物量 (g/plant)

Table  4   Biomass in various parts of cotton under conventional fertilization and rhizosphere management

地点
Site 处理
Treatment 茎 Stem 叶 Leaf 铃壳 Shell 纤维 Fiber 棉籽 Seed 总计 Total 石河子 CK 25.4±1.8 8.7±0.4 14.9±1.3 18.2±1.4 67.3±4.7 Shihezi RM 23.0±1.5 7.9±0.8 14.6±1.2 18.1±1.5 63.5±4.8 昌吉 CK 9.9±0.6 3.1±0.6 7.8±1.1 13.9±1.7 16.6±2.0 51.3±5.8 Changji RM 10.3±0.3 4.1±0.2 8.0±0.4 13.9±0.2 16.7±0.3 53.0±0.5 一八四团 CK 11.5±1.0 2.9±0.7 6.9±0.2 9.8±0.6 12.4±0.7 43.7±2.8 184 Tuan RM 12.0±1.1 3.2±0.3 7.8±0.7 12.1±0.8 15.4±1.2 50.5±3.8 六户地 CK 11.0±0.3 7.8±0.6 6.7±0.8 11.6±1.0 15.1±1.3 52.3±3.1 Liuhudi RM 10.7±0.5 8.1±0.4 6.6±0.1 10.4±0.2 13.6±0.3 49.4±0.9 北五岔 CK 12.4±0.8 7.9±0.3 6.5±0.6 9.3±0.1 10.0±0.9 46.0±1.3 Beiwucha RM 13.2±1.1 8.2±0.4 6.6±0.1 10.0±0.7 10.9±0.4 48.8±1.1 平均 CK 14.1±1.6 a 6.1±0.7 a 7.0±0.4 a 11.9±0.7 a 14.5±1.0 a 52.1±2.7 a Average RM 13.8±1.3 a 6.3±0.6 a 7.2±0.3 a 12.2±0.6 a 15.0±0.8 a 53.0±1.9 a 注:CK—常规施肥;RM—启动磷肥配合追施硫酸铵的根际调控技术。同列数据后不同小写字母表示CK和RM处理间差异显著 (P<0.05)。
Note: CK—Conventional fertilization; RM—Rhizosphere management technology at the core of start P fertilizer and ammonium sulfate topdressing. Different lowercase letters after data in a column indicate significant difference between CK and RM (P<0.05).

表  5   常规施肥与根际调控技术下棉花各器官氮、磷吸收量 (kg/hm2)

Table  5   N and P uptake of cotton organs under conventional fertilization and rhizosphere management

地点
Site 处理
Treatment 氮吸收量 N uptake 磷吸收量 P uptake 茎 Stem 叶 Leaf 铃壳 Shell 纤维 Fiber 棉籽 Seed 茎 Stem 叶 Leaf 铃壳 Shell 纤维 Fiber 棉籽 Seed 石河子
Shihezi CK 46.2±3.0 33.4±3.1 11.0±3.1 150.8±14.4 8.1±0.4 4.4±0.3 1.4±0.1 24.9±1.2 RM 37.7±3.3 27.9±1.7 12.5±2.0 157.9±19.2 5.4±0.7 4.4±0.6 1.3±0.1 24.8±1.6 昌吉
Changji CK 14.3±3.9 12.9±2.3 14.7±2.0 14.7±1.5 152.9±23.0 1.4±0.1a 2.6±0.6 3.3±0.7 2.5±0.3 28.0±4.4 RM 13.9±1.7 15.9±1.4 14.2±1.2 14.0±1.5 150.8±6.5 1.0±0.1b 2.9±0.3 3.0±0.2 2.4±0.1 29.3±1.3 一八四团
184 Tuan CK 12.7±3.3 18.2±5.1 30.7±2.6 16.4±1.0 128.8±17.3 4.2±0.3 2.4±0.5 4.9±0.5 2.9±0.6 26.4±0.8 RM 14.9±3.0 19.6±0.7 29.7±1.7 15.0±1.4 156.9±12.1 3.3±0.2 2.9±0.4 5.3±0.3 5.0±0.6 23.1±3.3 六户地
Liuhudi CK 15.9±1.5 45.9±3.7 13.8±1.9 10.1±1.7 139.3±13.9 3.0±0.2 7.5±0.7 2.9±0.3 1.9±0.2 26.0±2.6 RM 15.4±1.5 47.1±2.6 13.3±0.6 8.9±0.6 128.0±1.4 2.6±0.1 6.3±0.8 2.8±0.0 1.8±0.1 25.0±0.7 北五岔
Beiwucha CK 9.4±1.3 51.9±5.1 19.6±3.5 10.7±0.7 97.7±8.5 3.7±0 5.0±0.5 5.0±0.9 1.9±0.1 15.8±1.4 RM 8.3±1.2 54.8±1.1 19.5±2.0 10.9±1.0 88.8±5.6 4.3±0.3 5.0±0.0 4.3±0.5 2.0±0.2 16.0±1.2 注:CK—常规施肥;RM—启动磷肥配合追施硫酸铵的根际调控技术。
Note: CK—Conventional fertilization; RM—Rhizosphere management technology at the core of start P fertilizer and ammonium sulfate topdressing.

表  6   常规施肥与根际调控技术下棉花生产经济效益

Table  6   Economic benefits of cotton production under conventional fertilization and rhizosphere management technology

地点
Site 籽棉产量
Cotton yield
(kg/hm2) 施氮量
N application rate
(kg/hm2) 施磷量
P application rate
(kg/hm2) 籽棉收入
Cotton income
(yuan/hm2) 肥料成本
Fertilizer cost
(yuan/hm2) 增收
Income
(yuan/hm2) 节本
Cost saving
(yuan/hm2) 净收益增量
Net income
increase
(yuan/hm2) CK RM CK RM CK RM CK RM CK RM 石河子 Shihezi 7415 7024 225.0 225.0 52.4 39.3 51902 49167 2893 2582 −2735 311 −2423 昌吉 Changji 7852 7738 172.0 225.0 66.2 39.3 54964 54168 2923 2582 −796 341 −455 一八四团 184 Tuan 7416 7916 279.3 283.5 110.8 60.3 51913 55414 4837 3534 3501 1303 4084 六户地 Liuhudi 6214 5995 338.8 225.0 205.5 67.1 43497 41964 7802 3338 −1534 4464 2931 北五岔 Beiwucha 7819 7872 364.5 225.0 174.1 59.2 54732 55107 7117 3124 374 3993 4367 平均 Average 7343 7309 275.9 236.7 121.8 53.0 51402 51164 5114 3032 −238 2082 1845 注:CK—常规施肥;RM—启动磷肥配合追施硫酸铵的根际调控技术。尿素3000元/t,硫酸铵1500元/t,磷酸一铵7600元/t,籽棉7000元/t。
Note: CK—Conventional fertilization; RM—Rhizosphere management technology at the core of start P fertilizer and ammonium sulfate topdressing. The price used in the table is urea 3000 yuan/t, (NH4)2SO4 1500 yuan/t, monoammonium phosphate 7600 yuan/t, seed cotton 7000 yuan/t. [1] 梁亚军, 龚照龙, 王俊铎, 等. 2022年新疆棉花生产概况及存在问题与对策[J]. 中国棉花, 2023, 50(8): 4−8.

Liang Y J, Gong Z L, Wang J D, et al. General situation, problems and strategies of cotton production of Xinjiang in 2022[J]. 2022, 50(8): 4−8.

[2] 侯玉龙, 马琼, 何丽娟. 新疆棉花生产要素成本收益及规模报酬变动趋势研究: 基于465户农户问卷调查数据[J]. 中国农业资源与区划, 2021, 42(11): 243−252.

Hou Y L, Ma Q, He L J. Study on the changing trend of cotton production factors' cost-profit and returns to scale in Xinjiang: Based on the questionnaire survey data of 465 farm households[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(11): 243−252.

[3] 李雪源, 王俊铎, 郑巨云, 等. 探索建立新疆全产业链增值的棉花产业发展模式[J]. 棉花科学, 2020, 42(5): 20−25.

Li X Y, Wang J D, Zheng J Y, et al. Explore to establish the cotton industry development pattern that the whole industry chain adds value in Xinjiang[J]. Cotton Sciences, 2020, 42(5): 20−25.

[4]

Feng G, Gai J P, Feng X H, Li H G. Strategies for improving fertilizer phosphorus use efficiency in Chinese cropping systems[J]. Frontiers of Agricultural Science and Engineering, 2019, 6(4): 341−347. DOI: 10.15302/J-FASE-2019280

[5]

Sattari S Z, Bouwman A F, Giller K E, van Ittersum M K. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle[J]. Proceedings of the National Academy of Sciences, 2012, 109(16): 6348−6353. DOI: 10.1073/pnas.1113675109

[6]

Mogollón J M, Beusen A H W, van Grinsven H J M, et al. Future agricultural phosphorus demand according to the shared socioeconomic pathways[J]. Global Environmental Change, 2018, 50: 149−163. DOI: 10.1016/j.gloenvcha.2018.03.007

[7]

Gong H Q, Guo Y, Wu J C, et al. Synergies in sustainable phosphorus use and greenhouse gas emissions mitigation in China: Perspectives from the entire supply chain from fertilizer production to agricultural use[J]. Science of the Total Environment, 2022, 838(2): 155997.

[8]

White P J, Brown P H. Plant nutrition for sustainable development and global health[J]. Annals of Botany, 2010, 105(7): 1073−1080. DOI: 10.1093/aob/mcq085

[9] 哈丽哈什·依巴提, 李青军, 张炎. 有机无机配施对棉花氮磷钾养分吸收和产量的影响[J]. 新疆农业科学, 2020, 57(6): 1049−1056.

Harlhax Y, Li Q J, Zhang Y. Effects of chemical fertilizers application combined with manure on yield and nutrient absorption in cotton field[J]. Xinjiang Agricultural Sciences, 2020, 57(6): 1049−1056.

[10] 汤明尧, 沈重阳, 张炎, 等. 新疆棉花化肥利用效率研究[J]. 中国土壤与肥料, 2022, (4): 161−168.

Tang M Y, Shen C Y, Zhang Y, et al. Investigation of fertilizer use efficiency for cotton in Xinjiang[J]. Soil and Fertilizer Sciences in China, 2022, (4): 161−168.

[11] 陈家杰, 关钰, 王静, 褚贵新. 新疆农田施磷量、磷肥效率及磷肥品种长期演变[J]. 新疆农业科学, 2016, 53(10): 1858−1866.

Chen J J, Guan Y, Wang J, Chu G X. The long-term evolution of phosphate fertilizer application amount, efficiency and types on main crops in Xinjiang[J]. Xinjiang Agricultural Sciences, 2016, 53(10): 1858−1866.

[12]

Mai W X, Xue X R, Feng G, et al. Can optimization of phosphorus input lead to high productivity and high phosphorus use efficiency of cotton through maximization of root/mycorrhizal efficiency in phosphorus acquisition?[J]. Field Crops Research, 2018, 216: 100−108. DOI: 10.1016/j.fcr.2017.11.017

[13]

Richardson A E, Barea J M, McNeill A M, Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J]. Plant and Soil, 2009, 321(1): 305−339.

[14] 杨国江, 彭懿, 尹飞虎, 石磊. 滴灌磷肥在灰漠土中运移的研究[J]. 中国土壤与肥料, 2020, (6): 138−146.

Yang G J, Peng Y, Yin F H, Shi L. Phosphorus migration of monoammonium phosphate via drip-irrigation in gray desert soil[J]. Soil and Fertilizer Sciences in China, 2020, (6): 138−146.

[15]

Mai W X, Xue X R, Feng G, Tian C Y. Simultaneously maximizing root/mycorrhizal growth and phosphorus uptake by cotton plants by optimizing water and phosphorus management[J]. BMC Plant Biology, 2018, 18(1): 334. DOI: 10.1186/s12870-018-1550-8

[16] 李青军, 张炎, 哈丽哈什·依巴提, 冯固. 膜下滴灌棉花对3种水溶性磷肥的利用效率和产量响应[J]. 棉花学报, 2018, 30(2): 172−179.

Li Q J, Zhang Y, Harlhax Y, Feng G. Phosphorus utilization efficiency and yield responses of drip irrigated cotton under plastic film mulching to three types of water soluble phosphorus fertilizers[J]. Cotton Science, 2018, 30(2): 172−179.

[17] 彭懿, 杨国江, 国秀丽, 等. 基于输入–输出平衡的施磷方法可实现作物高产和磷肥高效: 以新疆水肥一体化棉花体系为例[J]. 土壤学报, 2023, 60(5): 1480−1492.

Peng Y, Yang G J, Guo X L, et al. Input-output balance-based P fertilization approach for achieving target crop yield and high P use efficiency: A case study of cotton ( Gossypium hirsutum L.) with mulched fertigation[J]. Acta Pedologica Sinica, 2023, 60(5): 1480−1492.

[18] 冯固. 提高我国土壤-作物体系磷肥高效利用的途径[J]. 磷肥与复肥, 2021, 36(2): 4.

Feng G. Ways to improve efficient utilization of phosphate fertilizer in soil-crop system in China[J]. Phosphate & Compound Fertilizer, 2021, 36(2): 4.

[19]

Wang X X, Liu S L, Zhang S M, et al. Localized ammonium and phosphorus fertilization can improve cotton lint yield by decreasing rhizosphere soil pH and salinity[J]. Field Crops Research, 2018, 217: 75−81. DOI: 10.1016/j.fcr.2017.12.011

[20] 张少民, 白灯莎·买买提艾力, 刘盛林, 冯固. 根际启动肥能够提高棉花磷效率和产量[J]. 棉花学报, 2020, 32(2): 121−132.

Zhang S M, Baidengsha M, Liu S L, Feng G. Banding superphosphate and ammonium sulfate as starter fertilizer improve phosphate fertilizer efficiency and cotton yield[J]. Cotton Science, 2020, 32(2): 121−132.

[21]

Wang F, Jiang R, Kertesz M A, et al. Arbuscular mycorrhizal fungal hyphae mediating acidification can promote phytate mineralization in the hyphosphere of maize ( Zea mays L.)[J]. Soil Biology and Biochemistry, 2013, 65: 69−74. DOI: 10.1016/j.soilbio.2013.05.010

[22]

Wang X J, Tang C X, Guppy C N, Sale P W G. Phosphorus acquisition characteristics of cotton ( Gossypium hirsutum L.), wheat ( Triticum aestivum L.) and white lupin ( Lupinus albus L.) under P deficient conditions[J]. Plant and Soil, 2008, 312(1): 117−128.

[23] 李青军, 张炎, 哈丽哈什·依巴提, 冯固. 漫灌和滴灌棉花土壤有效磷丰缺指标与临界值研究[J]. 植物营养与肥料学报, 2018, 24(4): 927−934.

Li Q J, Zhang Y, Harlhax Y, Feng G. Abundance index and critical level of phosphorus in cotton soils under flooding and drip irrigation[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 927−934.

[24]

Zou T, Zhang X, Davidson E A. Global trends of cropland phosphorus use and sustainability challenges[J]. Nature, 2022, 611: 81−87. DOI: 10.1038/s41586-022-05220-z

[25] 彭懿, 李青军, 张少民, 等. 基于根际过程调控的膜下滴灌棉花磷肥施用技术规程[J]. 中国棉花, 2020, 47(6): 31−38.

Peng Y, Li Q J, Zhang S M, et al. Technical regulation of phosphorus fertilizer application based on rhizosphere management for cotton under mulched drip irrigation[J]. China Cotton, 2020, 47(6): 31−38.

[26]

Britto D T, Kronzucker H J. NH4+ toxicity in higher plants: A critical review[J]. Journal of Plant Physiology, 2002, 159(6): 567−584. DOI: 10.1078/0176-1617-0774

[27] 刘世亮, 介晓磊, 李有田, 等. 不同磷源在石灰性土壤中的供磷能力及形态转化[J]. 河南农业大学学报, 2002, 36(4): 370−373.

Liu S L, Jie X L, Li Y T, et al. Study on bio-availability and transformation of different phosphates in calcareous soils[J]. Journal of Henan Agricultural University, 2002, 36(4): 370−373.

[28]

Yibati H, Zhang Y, Feng G, et al. Matching of soil phosphorus distribution and root distribution in cotton field based on diffusive gradients in thin-films (DGT)[J]. Communications in Soil Science and Plant Analysis, 2022, 53(14): 1783−1796. DOI: 10.1080/00103624.2022.2063323

[29] 袁芳, 马丹, 赵库, 等. 磷肥用量对新疆棉田磷素状况、籽棉产量和磷平衡的影响[J]. 西南农业学报, 2021, 34(5): 1033−1041.

Yuan F, Ma D, Zhao K, et al. Effect of phosphorus fertilization rate on cotton field phosphorus condition, yield and phosphorus balance in Xinjiang[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(5): 1033−1041.

[30] 李文静, 王创. 植物耐受铵离子毒性机制的研究进展[J]. 华中农业大学学报, 2022, 41(6): 152−159.

Li W J, Wang C. Progress in mechanisms of plant tolerance to ammonium toxicity[J]. Journal of Huazhong Agricultural University, 2022, 41(6): 152−159.

相关知识

棉花根外追施磷肥
膜下滴灌棉花氮磷肥料施用效果研究
推广膜下滴灌技术 提高节水增产增效水平
南疆膜下滴灌棉花灌溉和施肥调控效应及生长模拟研究
棉花膜下滴灌节水技术模式
华北平原膜下滴灌棉花水分利用效率及产量对供水方式响应研究
磷肥对棉花的作用
棉花膜下滴灌高产原理及栽培技术研究
水肥调控对机采棉模式下棉花株型结构塑造及产量的影响
新疆棉花膜下滴灌高产栽培技术分析

网址: 启动磷肥配合追施硫酸铵的根际调控技术提高膜下滴灌棉花磷肥效率和产量 https://m.huajiangbk.com/newsview1254999.html

所属分类:花卉
上一篇: 种植玫瑰,要注意选地...
下一篇: 2022年麦播技术的指导意见