首页 > 分享 > GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花种类识别正确率、各个模型运行时间对比—Jason niu...

GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花种类识别正确率、各个模型运行时间对比—Jason niu...

最新推荐文章于 2022-06-24 20:52:29 发布

aoduo9781 于 2018-02-06 20:54:00 发布

load iris_data.mat P_train = []; T_train = []; P_test = []; T_test = []; for i = 1:3 temp_input = features((i-1)*50+1:i*50,:); temp_output = classes((i-1)*50+1:i*50,:); n = randperm(50); P_train = [P_train temp_input(n(1:40),:)']; T_train = [T_train temp_output(n(1:40),:)']; P_test = [P_test temp_input(n(41:50),:)']; T_test = [T_test temp_output(n(41:50),:)']; end result_grnn = []; result_pnn = []; time_grnn = []; time_pnn = []; for i = 1:4 for j = i:4 p_train = P_train(i:j,:); p_test = P_test(i:j,:); t = cputime; net_grnn = newgrnn(p_train,T_train); t_sim_grnn = sim(net_grnn,p_test); T_sim_grnn = round(t_sim_grnn); t = cputime - t; time_grnn = [time_grnn t]; result_grnn = [result_grnn T_sim_grnn']; t = cputime; Tc_train = ind2vec(T_train); net_pnn = newpnn(p_train,Tc_train); Tc_test = ind2vec(T_test); t_sim_pnn = sim(net_pnn,p_test); T_sim_pnn = vec2ind(t_sim_pnn); t = cputime - t; time_pnn = [time_pnn t]; result_pnn = [result_pnn T_sim_pnn']; end end accuracy_grnn = []; accuracy_pnn = []; time = []; for i = 1:10 accuracy_1 = length(find(result_grnn(:,i) == T_test'))/length(T_test); accuracy_2 = length(find(result_pnn(:,i) == T_test'))/length(T_test); accuracy_grnn = [accuracy_grnn accuracy_1]; accuracy_pnn = [accuracy_pnn accuracy_2]; end result = [T_test' result_grnn result_pnn] accuracy = [accuracy_grnn;accuracy_pnn] time = [time_grnn;time_pnn]

转载于:https://www.cnblogs.com/yunyaniu/p/8424174.html

相关知识

Dataset之IRIS:鸢尾花(Iris)数据集的简介、下载、使用方法之详细攻略
基于机器学习的落叶松毛虫发生面积预测模型
基于神经网络的农业病虫害损失预测
基于matlab的神经网络的农业病虫害损失预测
cnn神经网络虫害预测
【中科院1区】花朵授粉算法FPA
基于神经网络——鸢尾花识别(Iris)
BP神经网络鸢尾花红酒数据分类分析与源码实现
基于深度卷积神经网络的移动端花卉识别系统
基于机器学习的鸢尾花数据集的三分类算法的实现 C++

网址: GRNN/PNN:基于GRNN、PNN两神经网络实现并比较鸢尾花种类识别正确率、各个模型运行时间对比—Jason niu... https://m.huajiangbk.com/newsview1280294.html

所属分类:花卉
上一篇: 500种常见花卉识别图鉴彩图
下一篇: 【花卉种类识别】 深度学习VCG