摘要: 深度神经网络模型被广泛应用在植物病虫害识别任务中,并取得巨大成功。同时,这些网络的计算复杂度和参数量也在不断增加,这将对神经网络的部署提出重大挑战,尤其是在硬件资源有限的设备或实时应用上。针对该问题,提出一种轻量化的病虫害识别模型,结合Ghost模块对VGG16进行改进,同时减少模型卷积层的卷积核个数,并引入Ranger优化器。试验结果表明,该模型在PlantVillage数据集上准确率为99.37%,FLOPs为88.45 M,比VGG16下降71.86%,有较快的收敛速度,在复杂环境下,模型的准确率为92.40%,识别时间为VGG16的50%。
关键词: 轻量化, 病虫害识别, Ghost模块, VGG网络, Ranger优化器
Abstract: The deep neural network model is widely used in the identification of plant diseases and insect pests and has achieved great success. At the same time, the computational complexity and parameter quantities of these networks are also increasing, which will pose a major challenge to the deployment of neural networks, especially on devices with limited hardware resources or realtime applications. Aiming to solve this problem, a lightweight pest identification model with Ranger optimizer is proposed, in which the VGG16 is improved by using the Ghost module and reducing the number of convolution kernels in the convolution layer. Experimental results show that the accuracy of the model on the PlantVillage dataset is 99.37%, and the FLOPs is 88.45 M, which is 71.86% lower than VGG16, and it has a faster convergence rate. In a complex environment, the accuracy of the model is 92.40%, and the time is 50% of VGG16.
Key words: lightweight, pests and diseases identification, Ghost module, VGG network, Ranger optimizer
中图分类号:
TP391.41
相关知识
基于python编程的五种鲜花识别
基于深度学习的花卉识别研究
深度学习之基于YoloV7植物病虫害识别及防治系统
基于深度学习和迁移学习的识花实践
基于注意力机制的小样本啤酒花病虫害识别
基于深度学习的植物病虫害识别方法与流程
【VGG】简单应用
基于 CNN 和迁移学习的农作物病害识别方法研究
深度学习简单网络VGG鲜花分类
扫一扫识别植物病虫害(花卉植物病虫害识别)
网址: 基于轻量化VGG的植物病虫害识别 https://m.huajiangbk.com/newsview131007.html
上一篇: YOLOv7:植物虫害识别&防治 |
下一篇: 基于图像的植物病害识别与分类 |