事实上,很多人都通过棋盘格的方式(张正友标定法)完成手眼标定,就是通过相机检测棋盘格的角点,来得到棋盘格在相机中的位姿。张正友标定法也是我常用的标定法,十分适合2D相机的标定。
这篇代码是我摘抄的某段网上的代码,原文链接。
我验证过,这段可以直接正常运行,按照代码中的位姿可以正确计算出手眼矩阵。使用时,将代码中的13对数字,替换成你自己的数字就好
#include <opencv2/opencv.hpp> #include <iostream> #include <math.h> using namespace std; using namespace cv; Mat R_T2HomogeneousMatrix(const Mat& R, const Mat& T); void HomogeneousMtr2RT(Mat& HomoMtr, Mat& R, Mat& T); bool isRotatedMatrix(Mat& R); Mat eulerAngleToRotateMatrix(const Mat& eulerAngle, const std::string& seq); Mat quaternionToRotatedMatrix(const Vec4d& q); Mat attitudeVectorToMatrix(const Mat& m, bool useQuaternion, const string& seq); //数据使用的已有的值 // 相机中13组标定板的位姿,x,y,z,rx,ry,rz, Mat_<double> CalPose = (cv::Mat_<double>(13, 6) <<-0.072944147641399, -0.06687830562048944, 0.4340418493881254, -0.2207496117519063, 0.0256862005614321, 0.1926014162476009,-0.01969337858360518, -0.05095294728651902, 0.3671266719105768, 0.1552099329677287, -0.5763323472739464, 0.09956130526058841,0.1358164536530692, -0.1110802522656379, 0.4001396735998251, -0.04486168331242635, -0.004268942058870162, 0.05290073845562016,0.1360676260120161, -0.002373036366121294, 0.3951670952829301, -0.4359637938379769, 0.00807193982932386, 0.06162504121755787,-0.1047666520352697, -0.01377729010376614, 0.4570029374109721, -0.612072103513551, -0.04939465180949879, -0.1075464055169537,0.02866460103085085, -0.1043911269729344, 0.3879127305077527, 0.3137563103168434, -0.02113958397023016, 0.1311397970432597,0.1122741829392126, 0.001044006395747612, 0.3686697279333643, 0.1607160803445018, 0.2468677059920437, 0.1035103912091547,-0.06079521129779342, -0.02815190820828123, 0.4451740202390909, 0.1280935541917056, -0.2674407142401368, 0.1633865613363686,-0.02475533256363622, -0.06950841248698086, 0.2939836207787282, 0.1260629671933584, -0.2637748974005461, 0.1634102148863728,0.1128618887222624, 0.00117877722121125, 0.3362496409334229, 0.1049541359309871, -0.2754352318773509, 0.4251492928748009,0.1510545750008333, -0.0725019944548204, 0.3369908269102371, 0.2615745097093249, -0.1295598776133405, 0.6974394284203849,0.04885313290076512, -0.06488755216394324, 0.2441532410787161, 0.1998243391807502, -0.04919417529483511, -0.05133193756053007,0.08816140480523708, -0.05549965109057759, 0.3164905645998022, 0.164693654482863, 0.1153894876338608, 0.01455551646362294); //机械臂末端13组位姿,x,y,z,rx,ry,rz Mat_<double> ToolPose = (cv::Mat_<double>(13, 6) <<-0.3969707, -0.460018, 0.3899877, 90.2261, -168.2015, 89.7748,-0.1870185, -0.6207147, 0.2851157, 57.2636, -190.2034, 80.7958,-0.1569776, -0.510021, 0.3899923, 90.225, -178.2038, 81.7772,-0.1569787, -0.5100215, 0.3299975, 90.2252, -156.205, 81.7762,-0.3369613, -0.4100348, 0.3299969, 90.2264, -146.2071, 71.778,-0.2869552, -0.6100449, 0.4299998, 90.2271, -199.2048, 86.7806,-0.2869478, -0.6600489, 0.4299948, 105.2274, -189.2053, 86.7814,-0.286938, -0.6300559, 0.4299997, 75.2279, -189.2056, 86.783,-0.2869343, -0.5700635, 0.2800084, 75.2291, -189.2055, 86.7835,-0.1669241, -0.5700796, 0.280015, 75.2292, -189.205, 101.7845,-0.236909, -0.4700997, 0.3600046, 87.2295, -196.2063, 118.7868,-0.2369118, -0.6201035, 0.2600001, 87.2297, -192.2087, 75.7896,-0.2468983, -0.620112, 0.359992, 97.2299, -190.2082, 80.7908); int main(int argc, char** argv) {//数据声明vector<Mat> R_gripper2base;vector<Mat> T_gripper2base;vector<Mat> R_target2cam;vector<Mat> T_target2cam;Mat R_cam2gripper = Mat(3,3,CV_64FC1);//相机与机械臂末端坐标系的旋转矩阵与平移矩阵Mat T_cam2gripper = Mat(3,1,CV_64FC1);Mat Homo_cam2gripper = Mat(4,4,CV_64FC1);vector<Mat> Homo_target2cam;vector<Mat> Homo_gripper2base;Mat tempR, tempT, temp;for (int i = 0; i < CalPose.rows; i++)//计算标定板与相机间的齐次矩阵(旋转矩阵与平移向量){temp = attitudeVectorToMatrix(CalPose.row(i), false, "");//注意seq为空,相机与标定板间的为旋转向量Homo_target2cam.push_back(temp);HomogeneousMtr2RT(temp, tempR, tempT);/*cout << i << "::" << temp << endl;cout << i << "::" << tempR << endl;cout << i << "::" << tempT << endl;*/R_target2cam.push_back(tempR);T_target2cam.push_back(tempT);}for (int j = 0; j < ToolPose.rows; j++)//计算机械臂末端坐标系与机器人基坐标系之间的齐次矩阵{temp = attitudeVectorToMatrix(ToolPose.row(j), false, "xyz"); //注意seq不是空,机械臂末端坐标系与机器人基坐标系之间的为欧拉角Homo_gripper2base.push_back(temp);HomogeneousMtr2RT(temp, tempR,tempT);/*cout << j << "::" << temp << endl;cout << j << "::" << tempR << endl;cout << j << "::" << tempT << endl;*/R_gripper2base.push_back(tempR);T_gripper2base.push_back(tempT);}//TSAI计算速度最快calibrateHandEye(R_gripper2base,T_gripper2base,R_target2cam,T_target2cam,R_cam2gripper,T_cam2gripper,CALIB_HAND_EYE_TSAI);Homo_cam2gripper = R_T2HomogeneousMatrix(R_cam2gripper, T_cam2gripper); cout << "手眼标定结果为:" << endl;cout << Homo_cam2gripper << endl;cout << "Homo_cam2gripper 是否包含旋转矩阵:" << isRotatedMatrix(Homo_cam2gripper) << endl; ////*************************************************** @note 手眼系统精度测试,原理是标定板在机器人基坐标系中位姿固定不变,* 可以根据这一点进行演算**************************************************///使用1,2组数据验证 标定板在机器人基坐标系中位姿固定不变cout << "1 : " << Homo_gripper2base[0] * Homo_cam2gripper * Homo_target2cam[0] << endl;cout << "2 : " << Homo_gripper2base[1] * Homo_cam2gripper * Homo_target2cam[1] << endl;//标定板在相机中的位姿cout << "3 : " << Homo_target2cam[1] << endl;cout << "4 : " << Homo_cam2gripper.inv() * Homo_gripper2base[1].inv() * Homo_gripper2base[0] * Homo_cam2gripper * Homo_target2cam[0] << endl;cout << "----手眼系统测试-----" << endl;cout << "机械臂下标定板XYZ为:" << endl;for (int i = 0; i < Homo_target2cam.size(); i++){Mat chessPos{ 0.0,0.0,0.0,1.0 }; //4*1矩阵,单独求机械臂坐标系下,标定板XYZMat worldPos = Homo_gripper2base[i] * Homo_cam2gripper * Homo_target2cam[i] * chessPos;cout << i << ": " << worldPos.t() << endl;}waitKey(0);return 0; } /************************************************** * @brief 将旋转矩阵与平移向量合成为齐次矩阵 * @note * @param Mat& R 3*3旋转矩阵 * @param Mat& T 3*1平移矩阵 * @return Mat 4*4齐次矩阵 **************************************************/ Mat R_T2HomogeneousMatrix(const Mat& R,const Mat& T) {Mat HomoMtr;Mat_<double> R1 = (Mat_<double>(4, 3) <<R.at<double>(0, 0), R.at<double>(0, 1), R.at<double>(0, 2),R.at<double>(1, 0), R.at<double>(1, 1), R.at<double>(1, 2),R.at<double>(2, 0), R.at<double>(2, 1), R.at<double>(2, 2),0, 0, 0);Mat_<double> T1 = (Mat_<double>(4, 1) <<T.at<double>(0,0),T.at<double>(1,0),T.at<double>(2,0),1);cv::hconcat(R1, T1, HomoMtr);//矩阵拼接return HomoMtr; } /************************************************** * @brief 齐次矩阵分解为旋转矩阵与平移矩阵 * @note * @paramconst Mat& HomoMtr 4*4齐次矩阵 * @paramMat& R 输出旋转矩阵 * @paramMat& T输出平移矩阵 * @return **************************************************/ void HomogeneousMtr2RT(Mat& HomoMtr, Mat& R, Mat& T) {//Mat R_HomoMtr = HomoMtr(Rect(0, 0, 3, 3)); //注意Rect取值//Mat T_HomoMtr = HomoMtr(Rect(3, 0, 1, 3));//R_HomoMtr.copyTo(R);//T_HomoMtr.copyTo(T);/*HomoMtr(Rect(0, 0, 3, 3)).copyTo(R);HomoMtr(Rect(3, 0, 1, 3)).copyTo(T);*/Rect R_rect(0, 0, 3, 3);Rect T_rect(3, 0, 1, 3);R = HomoMtr(R_rect);T = HomoMtr(T_rect); } /************************************************** * @brief检查是否是旋转矩阵 * @note * @param * @param * @param * @return true : 是旋转矩阵, false : 不是旋转矩阵 **************************************************/ bool isRotatedMatrix(Mat& R)//旋转矩阵的转置矩阵是它的逆矩阵,逆矩阵 * 矩阵 = 单位矩阵 {Mat temp33 = R({ 0,0,3,3 });//无论输入是几阶矩阵,均提取它的三阶矩阵Mat Rt;transpose(temp33, Rt); //转置矩阵Mat shouldBeIdentity = Rt * temp33;//是旋转矩阵则乘积为单位矩阵Mat I = Mat::eye(3, 3, shouldBeIdentity.type());return cv::norm(I, shouldBeIdentity) < 1e-6; } /************************************************** * @brief 欧拉角转换为旋转矩阵 * @note * @param const std::string& seq 指定欧拉角的排列顺序;(机械臂的位姿类型有xyz,zyx,zyz几种,需要区分) * @param const Mat& eulerAngle 欧拉角(1*3矩阵), 角度值 * @param * @return 返回3*3旋转矩阵 **************************************************/ Mat eulerAngleToRotateMatrix(const Mat& eulerAngle, const std::string& seq) {CV_Assert(eulerAngle.rows == 1 && eulerAngle.cols == 3);//检查参数是否正确eulerAngle /= (180 / CV_PI);//度转弧度Matx13d m(eulerAngle);//<double, 1, 3>auto rx = m(0, 0), ry = m(0, 1), rz = m(0, 2);auto rxs = sin(rx), rxc = cos(rx);auto rys = sin(ry), ryc = cos(ry);auto rzs = sin(rz), rzc = cos(rz);//XYZ方向的旋转矩阵Mat RotX = (Mat_<double>(3, 3) << 1, 0, 0,0, rxc, -rxs,0, rxs, rxc);Mat RotY = (Mat_<double>(3, 3) << ryc, 0, rys,0, 1, 0,-rys, 0, ryc);Mat RotZ = (Mat_<double>(3, 3) << rzc, -rzs, 0,rzs, rzc, 0,0, 0, 1);//按顺序合成后的旋转矩阵cv::Mat rotMat;if (seq == "zyx") rotMat = RotX * RotY * RotZ;else if (seq == "yzx") rotMat = RotX * RotZ * RotY;else if (seq == "zxy") rotMat = RotY * RotX * RotZ;else if (seq == "yxz") rotMat = RotZ * RotX * RotY;else if (seq == "xyz") rotMat = RotZ * RotY * RotX;else if (seq == "xzy") rotMat = RotY * RotZ * RotX;else{cout << "Euler Angle Sequence string is wrong...";}if (!isRotatedMatrix(rotMat))//欧拉角特殊情况下会出现死锁{cout << "Euler Angle convert to RotatedMatrix failed..." << endl;exit(-1);}return rotMat; } /************************************************** * @brief 将四元数转换为旋转矩阵 * @note * @param const Vec4d& q 归一化的四元数: q = q0 + q1 * i + q2 * j + q3 * k; * @return 返回3*3旋转矩阵R **************************************************/ Mat quaternionToRotatedMatrix(const Vec4d& q) {double q0 = q[0], q1 = q[1], q2 = q[2], q3 = q[3];double q0q0 = q0 * q0 , q1q1 = q1 * q1 , q2q2 = q2 * q2, q3q3 = q3 * q3;double q0q1 = q0 * q1 , q0q2 = q0 * q2 , q0q3 = q0 * q3;double q1q2 = q1 * q2, q1q3 = q1 * q3;double q2q3 = q2 * q3;//根据公式得来Mat RotMtr = (Mat_<double>(3, 3) << (q0q0 + q1q1 - q2q2 - q3q3), 2 * (q1q2 + q0q3), 2 * (q1q3 - q0q2),2 * (q1q2 - q0q3), (q0q0 - q1q1 + q2q2 - q3q3), 2 * (q2q3 + q0q1),2 * (q1q3 + q0q2), 2 * (q2q3 - q0q1), (q0q0 - q1q1 - q2q2 + q3q3));//这种形式等价/*Mat RotMtr = (Mat_<double>(3, 3) << (1 - 2 * (q2q2 + q3q3)), 2 * (q1q2 - q0q3), 2 * (q1q3 + q0q2), 2 * (q1q2 + q0q3), 1 - 2 * (q1q1 + q3q3), 2 * (q2q3 - q0q1), 2 * (q1q3 - q0q2), 2 * (q2q3 + q0q1), (1 - 2 * (q1q1 + q2q2)));*/return RotMtr; } /************************************************** * @brief 将采集的原始数据转换为齐次矩阵(从机器人控制器中获得的) * @note * @param Mat& m 1*6//1*10矩阵 , 元素为: x,y,z,rx,ry,rz or x,y,z, q0,q1,q2,q3,rx,ry,rz * @param bool useQuaternion 原始数据是否使用四元数表示 * @param string& seq 原始数据使用欧拉角表示时,坐标系的旋转顺序 * @return 返回转换完的齐次矩阵 **************************************************/ Mat attitudeVectorToMatrix(const Mat& m, bool useQuaternion, const string& seq) {CV_Assert(m.total() == 6 || m.total() == 10);//if (m.cols == 1)//转置矩阵为行矩阵//m = m.t();Mat temp = Mat::eye(4, 4, CV_64FC1);if (useQuaternion){Vec4d quaternionVec = m({ 3,0,4,1 }); //读取存储的四元数quaternionToRotatedMatrix(quaternionVec).copyTo(temp({0,0,3,3}));}else{Mat rotVec;if (m.total() == 6){rotVec = m({ 3,0,3,1 }); //读取存储的欧拉角}if (m.total() == 10){rotVec = m({ 7,0,3,1 });}//如果seq为空,表示传入的是3*1旋转向量,否则,传入的是欧拉角if (0 == seq.compare("")){Rodrigues(rotVec, temp({ 0,0,3,3 })); //罗德利斯转换}else{eulerAngleToRotateMatrix(rotVec, seq).copyTo(temp({ 0,0,3,3 }));}}//存入平移矩阵temp({ 3,0,1,3 }) = m({ 0,0,3,1 }).t();return temp; //返回转换结束的齐次矩阵 }1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.54.55.56.57.58.59.60.61.62.63.64.65.66.67.68.69.70.71.72.73.74.75.76.77.78.79.80.81.82.83.84.85.86.87.88.89.90.91.92.93.94.95.96.97.98.99.100.101.102.103.104.105.106.107.108.109.110.111.112.113.114.115.116.117.118.119.120.121.122.123.124.125.126.127.128.129.130.131.132.133.134.135.136.137.138.139.140.141.142.143.144.145.146.147.148.149.150.151.152.153.154.155.156.157.158.159.160.161.162.163.164.165.166.167.168.169.170.171.172.173.174.175.176.177.178.179.180.181.182.183.184.185.186.187.188.189.190.191.192.193.194.195.196.197.198.199.200.201.202.203.204.205.206.207.208.209.210.211.212.213.214.215.216.217.218.219.220.221.222.223.224.225.226.227.228.229.230.231.232.233.234.235.236.237.238.239.240.241.242.243.244.245.246.247.248.249.250.251.252.253.254.255.256.257.258.259.260.261.262.263.264.265.266.267.268.269.270.271.272.273.274.275.276.277.278.279.280.281.282.283.284.285.286.287.288.289.290.291.292.293.294.295.296.297.298.299.300.301.302.303.304.305.306.307.
相关知识
python玫瑰花代码简单
python玫瑰花代码讲解
python 生成玫瑰花代码
Python画玫瑰花完整代码
python画栀子花代码
Python表白代码:5个步骤,用代码打造独一无二的表白
python画玫瑰花代码简单
python国庆节代码
python程序员实现表白代码的案例
python画一朵花的代码
网址: python手眼标定代码 https://m.huajiangbk.com/newsview1320982.html
上一篇: 相机的内参标定(实现原理+具体操 |
下一篇: 标定中是什么意思 |