首页 > 分享 > 气候变暖对天敌昆虫的影响

气候变暖对天敌昆虫的影响

综述    气候变暖对天敌昆虫的影响1.浙江大学农业与生物技术学院昆虫科学研究所/浙江省作物病虫生物学重点实验室,杭州 310058
2.浙江大学海南研究院,海南 三亚 572000Effects of globa l warming on insect natural enemiesYueliang BAI1,2( ),Wenwu ZHOU1,2,Zengrong ZHU1,2( )1.Institute of Insect Sciences, College of Agriculture & Biotechnology, Zhejiang University/Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Hangzhou 310058, China
2.Hainan Institute of Zhejiang University, Sanya 572000, Hainan, China 摘要 图/表 参考文献 相关文章 Metrics摘要:

随着气候变化,预计全球温度将持续上升,这无疑会严重威胁生物多样性以及生态系统稳定性。作为变温动物,昆虫完全依赖外界温度完成生长发育以及各种生理活动,因此气候变暖很可能通过多种方式对昆虫个体、种群及其所在群落、食物网造成直接或间接的影响。但很多研究认为处于更高营养级的物种似乎对环境因子的变化更加敏感,这意味着捕食或寄生性天敌可能比其猎物或寄主面临更严峻的挑战。根据已有研究,本文分析了温度变化对天敌昆虫的生长发育、繁殖、捕食和寄生的影响,比较了相同物种(不同天敌物种)及不同营养级物种(天敌与其寄主或猎物)对温度升高的响应差异,归纳了气候变暖可能引起的天敌与害虫之间的同步性改变问题。总之,深入了解捕食和寄生性昆虫对气温上升的响应,对于气候变暖形势下农业有害生物的生态治理具有重要意义。

关键词:气候变暖; 天敌昆虫; 生物防治; 功能反应; 种间关系   Abstract:

With climate change, global temperatures are expected to rise, posing a pervasive and growing threat to biodiversity and ecosystem stability. As ectotherms, insects are completely dependent on environmental temperature to grow, develop, and regulate various physiological functions. Therefore, global warming is likely to have direct or indirect effects on insect individuals, populations, and their associated communities and food webs. However, many studies have suggested that the species at higher trophic levels seem to be more sensitive to changes in environmental factors, meaning that predators and parasitoids may face more severe challenges than their prey or hosts. In this paper, we analyzed the effects of temperature changes on the development, reproduction, predation and parasitism of insect natural enemies based on existing studies, compared the responses of the same species (different natural enemy species) and different trophic level species (natural enemy and its host or prey) to temperature increase, and summarized the synchronicity changes between natural enemies and pests caused by global warming. Understanding the response of insect predators and parasitoids to temperature rise is of great significance for biological control and ecological governance of agricultural pests in a warming climate.

Key words:global warming  insect natural enemy  biological control  functional response  interspecific relationship收稿日期: 2021-05-17出版日期: 2022-06-25基金资助: 浙江省科技计划项目(2019C04007);浙江省“三农六方”科技协作项目(2019SNLF006);浙江省重点研发计划项目(2018C04G2011264);国家自然科学基金项目(32072432);中央高校基本科研业务费专项资金(2021FZZX003-02-10)通讯作者:祝增荣    E-mail: ylbai@zju.edu.cn;zrzhu@zju.edu.cn作者简介: 白月亮(https://orcid.org/0000-0002-6577-8177),E-mail:ylbai@zju.edu.cn1 PACHAURI R K, MAYER L. Climate Change 2014: Synthesis Report[R]. Geneva, Switzerland: Intergovernmental Panel on Climate Change, 2014.2 HANSEN J, SATO M, RUEDY R. Perception of climate change[J]. PNAS, 2012, 109(37): E2415-E2423. DOI:10.1073/pnas.1205276109
doi: 10.1073/pnas.12052761093 BLOIS J L, ZARNETSKE P L, FITZPATRICK M C, et al. Climate change and the past, present, and future of biotic interactions[J]. Science, 2013, 341(6145): 499-504. DOI:10.1126/science.1237184
doi: 10.1126/science.12371844 VIDAL M C, ANNEBERG T J, CURÉ A E, et al. The variable effects of global change on insect mutualisms[J]. Current Opinion in Insect Science, 2021, 47: 46-52. DOI:10.1016/j.cois.2021.03.002
doi: 10.1016/j.cois.2021.03.0025 SÁNCHEZ-GUILLÉN R A, CÓRDOBA-AGUILAR A, HANSSON B, et al. Evolutionary consequences of climate-induced range shifts in insects[J]. Biological Reviews, 2016, 91(4): 1050-1064. DOI:10.1111/brv.12204
doi: 10.1111/brv.122046 GONZÁLEZ-TOKMAN D, CÓRDOBA-AGUILAR A, DÁTTILO W, et al. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world[J]. Biological Reviews, 2020, 95(3): 802-821. DOI:10.1111/brv.12588
doi: 10.1111/brv.125887 SUTHERST R W, CONSTABLE F, FINLAY K J, et al. Adapting to crop pest and pathogen risks under a changing climate[J]. Wiley Interdisciplinary Reviews—Climate Change, 2011, 2(2): 220-237. DOI:10.1002/wcc.102
doi: 10.1002/wcc.1028 LEHMANN P, AMMUNÉT T, BARTON M, et al. Complex responses of global insect pests to climate warming[J]. Frontiers in Ecology and the Environment, 2020, 18(3): 141-149. DOI:10.1002/fee.2160
doi: 10.1002/fee.21609 WYCKHUYS K A G, POZSGAI G, LOVEI G L, et al. Global disparity in public awareness of the biological control potential of invertebrates[J]. Science of the Total Environment, 2019, 660: 799-806. DOI:10.1016/j.scitotenv.2019.01.077
doi: 10.1016/j.scitotenv.2019.01.07710 HARDIN M R, BENREY B, COLL M, et al. Arthropod pest resurgence: an overview of potential mechanisms[J]. Crop Protection, 1995, 14(1): 3-18. DOI:10.1016/0261-2194(95)91106-p
doi: 10.1016/0261-2194(95)91106-p11 DAMALAS C A, ELEFTHEROHORINOS I G. Pesticide exposure, safety issues, and risk assessment indicators[J]. International Journal of Environmental Research and Public Health, 2011, 8(5): 1402-1419. DOI:10.3390/ijerph8051402
doi: 10.3390/ijerph805140212 LACANNE C E, LUNDGREN J G. Regenerative agriculture: merging farming and natural resource conservation profitably[J]. PeerJ, 2018, 6: e4428. DOI:10.7717/peerj.4428
doi: 10.7717/peerj.442813 VAN LENTEREN J C, BOLCKMANS K, KÖHL J, et al. Biological control using invertebrates and microorganisms: plenty of new opportunities[J]. BioControl, 2017, 63(1): 39-59. DOI:10.1007/s10526-017-9801-4
doi: 10.1007/s10526-017-9801-414 MARTÍNEZ-GARCÍA H, SÁENZ-ROMO M G, ARAGÓN-SÁNCHEZ M, et al. Temperature-dependent development of Macrolophus pygmaeus and its applicability to biological control[J]. BioControl, 2017, 62(4): 481-493. DOI:10.1007/s10526-017-9798-8
doi: 10.1007/s10526-017-9798-815 BARI M N, JAHAN M, ISLAM K S. Effects of temperature on the life table parameters of Trichogramma zahiri (Hymenoptera: Trichogrammatidae), an egg parasitoid of Dicladispa armigera (Chrysomelidae: Coleoptera)‍[J]. Environmental Entomology, 2015, 44(2): 368-378. DOI:10.1093/ee/nvu028
doi: 10.1093/ee/nvu02816 杨忠岐,李孟楼,雷琼,等.温度对花绒寄甲发育和生殖的影响[J].中国生物防治学报,2012,28(1):9-14. DOI:10.16409/j.cnki.2095-039x.2012.01.004
YANG Z Q, LI M L, LEI Q, et al. Effects of temperature on development and reproduction of Dastarcus helophoroides (Coleoptera: Bothrideridae)[J]. Chinese Journal of Biological Control, 2012, 28(1): 9-14. (in Chinese with English abstract)
doi: 10.16409/j.cnki.2095-039x.2012.01.00417 INGEGNO B L, MESSELINK G J, LEMAN A, et al. Development and thermal activity thresholds of European mirid predatory bugs[J]. Biological Control, 2021, 152: 104423. DOI:10.1016/j.biocontrol.2020.104423
doi: 10.1016/j.biocontrol.2020.10442318 HONDO T, KOIKE A, SUGIMOTO T. Comparison of thermal tolerance of seven native species of parasitoids (Hymenoptera: Eulophidae) as biological control agents against Liriomyza trifolii (Diptera: Agromyzidae) in Japan[J]. Applied Entomology and Zoology, 2006, 41(1): 73-82. DOI:10.1303/aez.2006.73
doi: 10.1303/aez.2006.7319 WANG T, KELLER M A, HOGENDOORN K. The effects of temperature on the development, fecundity and mortality of Eretmocerus warrae: Is Eretmocerus warrae better adapted to high temperatures than Encarsia formosa [J]. Pest Management Science, 2019, 75(3): 702-707. DOI:10.1002/ps.5169
doi: 10.1002/ps.516920 BAI Y L, QUAIS M K, ZHOU W W, et al. Consequences of elevated temperature on the biology, predation, and competitiveness of two mirid predators in the rice ecosystem[J]. Journal of Pest Science, 2021, 95(2): 901-916. DOI:10.1007/s10340-021-01414-y
doi: 10.1007/s10340-021-01414-y21 VOIGT W, PERNER J, DAVIS A J, et al. Trophic levels are differentially sensitive to climate[J]. Ecology, 2003, 84(9): 2444-2453. DOI:10.1890/02-0266
doi: 10.1890/02-026622 FURLONG M J, ZALUCKI M P. Climate change and biological control: the consequences of increasing temperatures on host-parasitoid interactions[J]. Current Opinion in Insect Science, 2017, 20: 39-44. DOI:10.1016/j.cois.2017.03.006
doi: 10.1016/j.cois.2017.03.00623 韩宗礼,谭晓玲,陈巨莲.环境温度变化对异色瓢虫的飞行与运动能力的影响[J].中国生物防治学报,2017,33(4):433-441. DOI:10.16409/j.cnki.2095-039x.2017.04.001
HAN Z L, TAN X L, CHEN J L. Effect of environmental temperature variations on flight and locomotory behavior of Harmonia axyridis (Coleoptera: Coccinellidae)‍[J]. Chinese Journal of Biological Control, 2017, 33(4): 433-441. (in Chinese with English abstract)
doi: 10.16409/j.cnki.2095-039x.2017.04.00124 JERBI-ELAYED M, LEBDI-GRISSA K, LE GOFF G, et al. Influence of temperature on flight, walking and oviposition capacities of two aphid parasitoid species (Hymenoptera: Aphidiinae)‍[J]. Journal of Insect Behavior, 2015, 28(2): 157-166. DOI:10.1007/s10905-015-9490-8
doi: 10.1007/s10905-015-9490-825 HERRERA E Q, CASAS J, DANGLES O, et al. Temperature effects on ballistic prey capture by a dragonfly larva[J]. Ecology and Evolution, 2018, 8(8): 4303-4311. DOI:10.1002/ece3.3975
doi: 10.1002/ece3.397526 TWARDOCHLEB L A, TREAKLE T C, ZARNETSKE P L. Foraging strategy mediates ectotherm predator-prey responses to climate warming[J]. Ecology, 2020, 101(11): e03146. DOI:10.1002/ecy.3146
doi: 10.1002/ecy.314627 SCHWARZ T, FRANK T. Aphid feeding by lady beetles: higher consumption at higher temperature[J]. BioControl, 2019, 64(3): 323-332. DOI:10.1007/s10526-019-09931-7
doi: 10.1007/s10526-019-09931-728 林清彩,陈浩,尹园园,等.不同温度对食蚜瘿蚊生长发育和幼虫捕食能力的影响[J].应用昆虫学报,2019,56(1):79-84. DOI:10.7679/j.issn.2095-1353.2019.009
LIN Q C, CHEN H, YIN Y Y, et al. Effects of temperature on the development and predation of Aphidoletes aphidimyza (Rondani) larvae[J]. Chinese Journal of Applied Entomology, 2019, 56(1): 79-84. (in Chinese with English abstract)
doi: 10.7679/j.issn.2095-1353.2019.00929 FRANK T, BRAMBÖCK M. Predatory beetles feed more pest beetles at rising temperature[J]. BMC Ecology, 2016, 16: 21. DOI:10.1186/s12898-016-0076-x
doi: 10.1186/s12898-016-0076-x30 START D, KIRK D, SHEA D, et al. Cannibalism by damselflies increases with rising temperature[J]. Biology Letters, 2017, 13(5): 20170175. DOI:10.1098/rsbl.2017.0175
doi: 10.1098/rsbl.2017.017531 CRUMRINE P W. Body size, temperature, and seasonal differences in size structure influence the occurrence of cannibalism in larvae of the migratory dragonfly, Anax junius [J]. Aquatic Ecology, 2010, 44(4): 761-770. DOI:‍10.1007/s10452-010-9314-z
doi: ?10.1007/s10452-010-9314-z32 FRANCES D N, MCCAULEY S J. Warming drives higher rates of prey consumption and increases rates of intraguild predation[J]. Oecologia, 2018, 187(3): 585-596. DOI:10.1007/s00442-018-4146-y
doi: 10.1007/s00442-018-4146-y33 HANSEN L S, JENSEN K M V. Effect of temperature on parasitism and host-feeding of Trichogramma turkestanica (Hymenoptera: Trichogrammatidae) on Ephestia kuehniella (Lepidoptera: Pyralidae)[J]. Journal of Economic Entomology, 2002, 95(1): 50-56. DOI:10.1603/0022-0493-95.1.50
doi: 10.1603/0022-0493-95.1.5034 MOIROUX J, BRODEUR J, BOIVIN G. Sex ratio variations with temperature in an egg parasitoid: behavioural adjustment and physiological constraint[J]. Animal Behaviour, 2014, 91: 61-66. DOI:10.1016/j.anbehav.2014.02.021
doi: 10.1016/j.anbehav.2014.02.02135 王进强,许丽月,李发昌,等.温度对优雅岐脉跳小蜂出蜂率及性比的影响[J].环境昆虫学报,2019,41(1):161-166. DOI:10.3969/j.issn.1674-0858.2019.01.20
WANG J Q, XU L Y, LI F C, et al. Effect of temperature on emergence rate and sex ratio of Diversinervus elegans Silvestri[J]. Journal of Environmental Entomology, 2019, 41(1): 161-166. (in Chinese with English abstract)
doi: 10.3969/j.issn.1674-0858.2019.01.2036 朱亮,葛振泰,宫亚军,等.温度对东亚小花蝽捕食美洲棘蓟马的影响[J].植物保护学报,2015,42(2):229-236. DOI:10.13802/j.cnki.zwbhxb.2015.02.013
ZHU L, GE Z Q, GONG Y J, et al. Effects of temperature on predation of the thrips Echinothrips americanus (Thysanoptera: Thripidae) by the predatory bug Orius sauteri (Heteroptera: Anthocoridae)[J]. Journal of Plant Protection, 2015, 42(2): 229-236. (in Chinese with English abstract)
doi: 10.13802/j.cnki.zwbhxb.2015.02.01337 施祖华,刘树生.温度对菜蛾绒茧蜂功能反应的影响[J].应用生态学报,1999,10(3):332-334. DOI:10.3321/j.issn:1001-9332.1999.03.020
SHI Z H, LIU S S. Influence of temperature on functional response of Cotesia plutellae [J]. Chinese Journal of Applied Ecology, 1999, 10(3): 332-334. (in Chinese with English abstract)
doi: 10.3321/j.issn:1001-9332.1999.03.02038 SONG Y H, HEONG K L. Changes in searching responses with temperature of Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae) on the eggs of the brown planthopper, Nilaparvata lugens (Stål.) (Homoptera: Delphacidae)‍[J]. Researches on Population Ecology, 1997, 39(2): 201-206. DOI:10.1007/bf02765266
doi: 10.1007/bf0276526639 ZIAEI MADBOUNI M A, SAMIH M A, NAMVAR P, et al. Temperature-dependent functional response of Nesidiocoris tenuis (Hemiptera: Miridae) to different densities of pupae of cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae)[J]. European Journal of Entomology, 2017, 114: 325-331. DOI:10.14411/eje.2017.040
doi: 10.14411/eje.2017.04040 SILVANUNES G DA, TRUZI C C, CARDOSO C P, et al. Temperature-dependent functional response of Euborellia annulipes (Dermaptera: Anisolabididae) preying on Plutella xylostella (Lepidoptera: Plutellidae) larvae[J]. Journal of Thermal ‍Biology, ‍2020, ‍93: ‍102686. ‍DOI:‍10.1016/‍j.‍jtherbio.2020.102686
doi: ?10.1016/?j.?jtherbio.2020.10268641 谢丽娜,董辉,钱海涛,等.不同温度下松毛虫赤眼蜂孤雌产雌品系和两性生殖品系对米蛾卵的寄生功能反应[J].昆虫学报,‍2013,‍56(3):‍263-269. DOI:‍10.16380/j.kcxb.2013.03.007
XIE L N, DONG H, QIAN H T, et al. Functional response of thelytokous and arrhenotokous strains of Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae) to eggs of Corcyra cephalonica (Lepidoptera: Pyralidae) at different temperatures[J]. Acta Entomologica Sinica, 2013, 56(3): 263-269. (in Chinese with English abstract)
doi: ?10.16380/j.kcxb.2013.03.00742 FUENTEALBA A, PURESWARAN D, BAUCE E, et al. How does synchrony with host plant affect the performance of an outbreaking insect defoliator[J]. Oecologia, 2017, 184(4): 847-857. DOI:10.1007/s00442-017-3914-4
doi: 10.1007/s00442-017-3914-443 PAAIJMANS K P, HEINIG R L, SELIGA R A, et al. Temperature variation makes ectotherms more sensitive to climate change[J]. Global Change Biology, 2013, 19(8): 2373-2380. DOI:10.1111/gcb.12240
doi: 10.1111/gcb.1224044 CHEN I C, HILL J K, SHIU H J, et al. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming[J]. Global Ecology and Biogeography, 2011, 20(1): 34-45. DOI:‍10.1111/j.‍1466-8238.2010.00594.x
doi: ?10.1111/j.?1466-8238.2010.00594.x45 FORREST J R K. Complex responses of insect phenology to climate change[J]. Current Opinion in Insect Science, 2016, 17: 49-54. DOI:10.1016/j.cois.2016.07.002
doi: 10.1016/j.cois.2016.07.00246 GILMAN S E, URBAN M C, TEWKSBURY J, et al. A framework for community interactions under climate change[J]. Trends in Ecology & Evolution, 2010, 25(6): 325-331. DOI:10.1016/j.tree.2010.03.002
doi: 10.1016/j.tree.2010.03.00247 DAMIEN M, TOUGERON K. Prey-predator phenological mismatch under climate change[J]. Current Opinion in Insect Science, 2019, 35: 60-68. DOI:10.1016/j.cois.2019.07.002
doi: 10.1016/j.cois.2019.07.00248 EVANS E W, CARLILE N R, INNES M B, et al. Warm springs reduce parasitism of the cereal leaf beetle through phenological mismatch[J]. Journal of Applied Entomology, 2013, 137(5): 383-391. DOI:10.1111/jen.12028
doi: 10.1111/jen.1202849 VAN NOUHUYS S, LEI G C. Parasitoid-host metapopulation dynamics: the causes and consequences of phenological asynchrony[J]. Journal of Animal Ecology, 2004, 73(3): 526-535. DOI:10.1111/j.0021-8790.2004.00827.x
doi: 10.1111/j.0021-8790.2004.00827.x50 CHEN I C, HILL J K, OHLEMÜLLER R, et al. Rapid range shifts of species associated with high levels of climate warming[J]. Science, 2011, 333(6045): 1024-1026. DOI:‍10.1126/science. 1206432
doi: ?10.1126/science. 120643251 PECL G T, ARAÚJO M B, BELL J D, et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being[J]. Science, 2017, 355(6332): eaai9214. DOI:10.1126/science.aai9214
doi: 10.1126/science.aai921452 THIERRY M, HRČEK J, LEWIS O T. Mechanisms structuring host-parasitoid networks in a global warming context: a review[J]. Ecological Entomology, 2019, 44(5): 581-592. DOI:10.1111/een.12750
doi: 10.1111/een.1275053 MATTILA N, KAITALA V, KOMONEN A, et al. Ecological correlates of distribution change and range shift in butterflies[J]. Insect Conservation and Diversity, 2011, 4(4): 239-246. DOI:10.1111/j.1752-4598.2011.00141.x
doi: 10.1111/j.1752-4598.2011.00141.x54 MARSHALL L, PERDIJK F, DENDONCKER N, et al. Bumblebees moving up: shifts in elevation ranges in the Pyrenees over 115 years[J]. Proceedings of the Royal Society B: Biological Sciences, 2020, 287(1938): 20202201. DOI:10.1098/rspb.2020.2201
doi: 10.1098/rspb.2020.220155 KHARUK V I, IM S T, SOLDATOV V V. Siberian silkmoth outbreaks surpassed geoclimatic barrier in Siberian Mountains[J]. Journal of Mountain Science, 2020, 17(8): 1891-1900. DOI:10.1007/s11629-020-5989-3
doi: 10.1007/s11629-020-5989-356 MENÉNDEZ R, GONZÁLEZ-MEGÍAS A, LEWIS O T, et al. Escape from natural enemies during climate-driven range expansion: a case study[J]. Ecological Entomology, 2008, 33(3): 413-421. DOI:10.1111/j.1365-2311.2008.00985.x
doi: 10.1111/j.1365-2311.2008.00985.x57 SCHÖNROGGE K, BEGG T, WILLIAMS R, et al. Range expansion and enemy recruitment by eight alien gall wasp species in Britain[J]. Insect Conservation and Diversity, 2011, 5(4): 298-311. DOI:10.1111/j.1752-4598.2011.00161.x
doi: 10.1111/j.1752-4598.2011.00161.x58 LE LANN C, LODI M, ELLERS J. Thermal change alters the outcome of behavioural interactions between antagonistic partners[J]. Ecological Entomology, 2014, 39(5): 578-588. DOI:10.1111/een.12135
doi: 10.1111/een.1213559 BENSADIA F, BOUDREAULT S, GUAY J F, et al. Aphid clonal resistance to a parasitoid fails under heat stress[J]. Journal of Insect Physiology, 2006, 52(2): 146-157. DOI:‍10.1016/j.jinsphys.2005.09.011
doi: ?10.1016/j.jinsphys.2005.09.01160 刘燕强,雷贤富,曾永亮,等.春季气温变暖导致禾谷缢管蚜时段性衰减的原因研究[J].中国植保导刊,2009,29(5):9-11. DOI:10.3969/j.issn.1672-6820.2009.05.002
LIU Y Q, LEI X F, ZENG Y L, et al. Study on periodical reduction of Rhopalosiphum padi resulted from warmer climate in spring[J]. China Plant Protection, 2009, 29(5): 9-11. (in Chinese with English abstract)
doi: 10.3969/j.issn.1672-6820.2009.05.00261 DELL I H, DAVIS T S. Effects of site thermal variation and physiography on flight synchrony and phenology of the North American spruce beetle (Coleoptera: Curculionidae, Scolytinae) and associated species in Colorado[J]. Environmental Entomology, 2019, 48(4): 998-1011. DOI:10.1093/ee/nvz067
doi: 10.1093/ee/nvz06762 CULLER L E, AYRES M P, VIRGINIA R A. In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster[J]. Proceedings of the Royal Society B: Biological Sciences, 2015, 282(1815): 20151549. DOI:10.1098/rspb.2015.1549
doi: 10.1098/rspb.2015.154963 KLAPWIJK M J, GRÖBLER B C, WARD K, et al. Influence of experimental warming and shading on host-parasitoid synchrony[J]. Global Change Biology, 2010, 16(1): 102-112. DOI:10.1111/j.1365-2486.2009.01918.x
doi: 10.1111/j.1365-2486.2009.01918.x64 LAWS A N. Climate change effects on predator-prey interactions[J]. Current Opinion in Insect Science, 2017, 23: 28-34. DOI:10.1016/j.cois.2017.06.010
doi: 10.1016/j.cois.2017.06.01065 WALTHER G R. Plants in a warmer world[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2004, 6(3): 169-185.ViewedFull text


Abstract

Cited

  Shared      Discussed   

相关知识

气候变暖对植物、传粉者及其相互作用的影响
气候变暖对农业的影响
气候变暖对森林土壤碳循环的影响
全球变暖对植物的影响
气候变暖对天气预报的影响及应对策略.docx
气候变暖对植物花叶间隔影响规律被揭示
《全球变暖对植物的影响》.ppt
天敌昆虫的开发利用
研究发现植物物候对气候变暖的响应
从微生物角度揭示气候变暖对土壤有机碳转化影响的研究综述

网址: 气候变暖对天敌昆虫的影响 https://m.huajiangbk.com/newsview1323205.html

所属分类:花卉
上一篇: 做强绿色产业链 阿坝小金浇灌高原
下一篇: 潮湿的地方滋生的黑色飞虫是什么