首页 > 分享 > pytorch深度学习框架——实现病虫害图像分类

pytorch深度学习框架——实现病虫害图像分类

一、pytorch框架

1.1、概念

PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。
2017年1月,由Facebook人工智能研究院(FAIR)基于Torch推出了PyTorch。它是一个基于Python的可续计算包,提供两个高级功能:
1、具有强大的GPU加速的张量计算(如NumPy)。
2、包含自动求导系统的深度神经网络。

1.2、机器学习与深度学习的区别

两者之间区别很多,在本篇博客中只简单描述一部分。以图片的形式展现。
前者为机器学习的过程。
后者为深度学习的过程。
区别

1.3、在python中导入pytorch成功截图

运行界面截图

二、数据集

本次实验使用的是coco数据集中的植物病虫害数据集。分为训练文件Traindata和测试文件TestData.,
TrainData有9种分类,每一种分类有100张图片。
TestData有9中分类,每一种分类有10张图片。
在我下一篇博客中将数据集开源。
下面是我的数据集截图:
数据集截图

三、代码复现

3.1、导入第三方库

import torch from torch.utils.data import Dataset, DataLoader import numpy as np import matplotlib import os import cv2 from PIL import Image import torchvision.transforms as transforms import torch.optim as optim from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F from Test.CNN import Net import json from Test.train_data import Mydataset,pad_image 123456789101112131415 3.2、CNN代码:

# 构建神经网络 class Net(nn.Module):#定义网络模块 def __init__(self): super(Net, self).__init__() # 卷积,该图片有3层,6个特征,长宽均为5*5的像素点,每隔1步跳一下 self.conv1 = nn.Conv2d(3, 6, 5) #//(conv1): Conv2d(3, 6, kernel_size=(5, 5), stride=(1, 1)) self.pool = nn.MaxPool2d(2, 2)#最大池化 #//(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) self.conv2 = nn.Conv2d(6, 16, 5)#卷积 #//(conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1)) self.fc1 = nn.Linear(16*77*77, 120)#全连接层,图片的维度为16, #(fc1): Linear(in_features=94864, out_features=120, bias=True) self.fc2 = nn.Linear(120, 84)#全连接层,输入120个特征输出84个特征 self.fc3 = nn.Linear(84, 7)#全连接层,输入84个特征输出7个特征 def forward(self, x): print("x.shape1: ", x.shape) x = self.pool(F.relu(self.conv1(x))) print("x.shape2: ", x.shape) x = self.pool(F.relu(self.conv2(x))) print("x.shape3: ", x.shape) x = x.view(-1, 16*77*77) print("x.shape4: ", x.shape) x = F.relu(self.fc1(x)) print("x.shape5: ", x.shape) x = F.relu(self.fc2(x)) print("x.shape6: ", x.shape) x = self.fc3(x) print("x.shape7: ", x.shape) return x

123456789101112131415161718192021222324252627282930313233 3.3、测试代码

img_path = "TestData/test_data/1/Apple2 (1).jpg" #使用相对路径 image = Image.open(img_path).convert('RGB') image_pad = pad_image(image, (320, 320)) input = transform(image_pad).to(device).unsqueeze(0) output = F.softmax(net(input), 1) _, predicted = torch.max(output, 1) score = float(output[0][predicted]*100) print(class_map[predicted], " ", str(score)+" %") plt.imshow(image_pad) # 显示图片 12345678910

四、训练结果

4.1、LOSS损失函数

损失函数

4.2、 ACC

ACC

4.3、单张图片识别准确率

识别结果准确率

四、小结

这次搭建的网络是基于深度学习框架Lenet,并自己做了一些修改完成。最终的训练的结果LOSS接近0,ACC接近100%。但是一般的识别率不会达到这么高,该模型可能会过拟合。可采取剪枝等操作减小过拟合。

相关知识

基于深度学习和迁移学习的识花实践
转移学习:使用VGGNet对花朵图像进行分类
基于深度学习的玉米病虫害检测系统(网页版+YOLOv8/v7/v6/v5代码+训练数据集)
植物病害检测系统:利用深度学习守护农田的科技先锋
用于马铃薯叶片病害预测的端到端深度学习框架(完整代码)
深度学习在植物病害目标检测的科研进展
深度学习花的分类识别
【pytorch】resNet152迁移学习实现植物病害图像识别分类
基于深度学习的植物病虫害识别方法与流程
基于深度学习特征的植物病虫害检测

网址: pytorch深度学习框架——实现病虫害图像分类 https://m.huajiangbk.com/newsview135007.html

所属分类:花卉
上一篇: 矩形堰单位长度上的流量 Q/B=
下一篇: 水稻虫害智能预测模型及其应用