首页 > 分享 > 2000—2020年黄河源区水源涵养能力模拟与分析

2000—2020年黄河源区水源涵养能力模拟与分析

摘要:

黄河源区是黄河流域的重要产水区和水源涵养区,其水源涵养能力对河流上中下游区域的社会经济发展影响重大。基于InVEST模型计算了2000—2020年黄河源区的产水量和水源涵养量,结果表明,多年平均产水总量和水源涵养总量分别为198.8×108和35.3×108 m3。产水量和水源涵养量空间分布基本一致,呈现自东向西、自南向北递减的特点。在研究时段内,二者均呈显著上升趋势,整体上升速率分别为3.8和0.7 mm/a,自东南向西北依次表现为极显著上升、显著上升、轻微上升及没有明显变化。各土地利用类型的水源涵养总量由高到低分别为草地、耕地、湿地、林地、未利用地及城镇用地。降水是导致水源涵养量变化的主要原因,其次是蒸散发和土地利用类型。水源涵养量对不同土地利用类型变化响应的结果表明,湿地面积增大能为黄河源区水源涵养量提供最大的增益,其次为草地,城镇用地面积增大对其增益最小。

Abstract:

The source area of the Yellow River plays a vital role in water yield and conservation within the Yellow River Basin, impacting socio-economic development along the river’s upper, middle, and lower reaches. This study employs the InVEST model to analyze the water yield and conservation capacity of the Yellow River source area from 2000 to 2020. The findings indicate an average annual water yield of 198.8×108 m3 and a water conservation capacity of 35.3×108 m3. Spatially, both water yield and conservation capacity exhibit similar patterns, gradually decreasing from east to west and south to north. Over the study period, both metrics display a significant increasing trend, with growth rates of 3.8 mm/a and 0.7 mm/a, respectively. Notably, the increase varies across regions, ranging from highly significant to no significant change as one moves from the southeast to the northwest. The land use types with the highest to lowest total water conservation capacities are grassland, cropland, wetland, forest, bareland, and urban land. Precipitation serves as the primary driver of water conservation changes, followed by evapotranspiration and land use. Furthermore, the study reveals that an increase in wetland area yields the greatest improvement in water conservation within the Yellow River source area, followed by grassland, while an increase in urban land area provides the least improvement.

图  1   黄河源区示意

Figure  1.   The source region of the Yellow River

图  2   黄河源区土地利用类型

Figure  2.   Land use/land cover types found in the source area of the Yellow River

图  3   产水量与经验常数(Z)关系

Figure  3.   The correlation between water yield and the empirical constant (Z)

图  4   2000—2020年地类转移情况

注:由于黄河源区地类发生变化的面积占比很小,因此图中仅展示发生变化的部分。

Figure  4.   Transition matrix of land use/land cover from 2000 to 2020

图  5   2000—2020年黄河源区各地类面积变化

Figure  5.   The temporal variation of land use/land cover types in the Yellow River source area from 2000 to 2020

图  6   2000—2020年黄河源区产水量

Figure  6.   Water yield trends in the Yellow River source area from 2000 to 2020

图  7   2000—2020年黄河源区水源涵养量

Figure  7.   Water conservation capacity trends in the Yellow River source area from 2000 to 2020

图  8   2000—2020年黄河源区不同地类的水源涵养量

注:***、**和*分别表示在0.01、0.05和0.1显著性水平下,显著增加。

Figure  8.   Water conservation capacity of different land use/land cover types in the Yellow River source area from 2000 to 2020

图  9   仅降水发生变化时水源涵养量的变化

Figure  9.   Changes in water conservation capacity due to variations in precipitation alone

图  10   仅潜在蒸散发发生变化时水源涵养量的变化

Figure  10.   Changes in water conservation capacity due to changes in potential evapotranspiration alone

图  11   仅地类发生变化时水源涵养量的变化

注:r为该地类水源涵养量与该地类面积的相关系数,R2表示线性拟合的决定系数。

Figure  11.   Changes in water conservation capacity due to changes in land use/land cover types alone

表  1   土地利用类型

Table  1   Land use/land cover categories

代码本研究
土地利用类型欧空局
土地利用类型 1耕地雨养农地水淹或灌溉农地耕作(50%~70%)/其他自然植被镶嵌耕作(20%~50%)/其他自然植被镶嵌2林地郁闭或敞开(>15%)常绿阔叶林郁闭或敞开(>15%)落叶阔叶林郁闭或敞开(>15%)常绿针叶林郁闭或敞开(>15%)落叶针叶林林地(>50%)/草地(<50%)镶嵌灌木3草地草地(>50%)/林地(<50%)镶嵌草地4未利用地稀疏植被裸地5水域水体永久冰雪6湿地水淹林地有规律水淹或长期水淹草地7城镇用地人工地表或附属区域

表  2   趋势检验P值和$ tau $值及其对应的趋势类别

Table  2   Trend test results for P and τ values and their corresponding trend categories

$ tau $值$ P $值趋势类别趋势特征 $ tau > 0 $$ Pleqslant 0.01 $3极显著上升$ 0.01 < Pleqslant 0.05 $2显著上升$ 0.05 < Pleqslant 0.1 $1轻微上升$ tau approx 0 $$ P > 0.1 $0无变化$ tau < 0 $$ 0.05 < Pleqslant 0.1 $−1轻微下降$ 0.01 < Pleqslant 0.05 $−2显著下降$ Pleqslant 0.01 $−3极显著下降 [1] 薛健, 李宗省, 冯起, 等. 1980—2017年祁连山水源涵养量时空变化特征[J]. 冰川冻土,2022,44(1):1-13

XUE Jian, LI Zongxing, FENG Qi, et al. Spatiotemporal variation characteristics of water conservation amount in the Qilian Mountains from 1980 to 2017[J]. Journal of Glaciology and Geocryology, 2022, 44(1): 1-13. (in Chinese)

[2] 左其亭, 王娇阳, 杨峰, 等. 水源涵养相关概念辨析及水源涵养能力计算方法[J]. 水利水电科技进展,2022,42(2):13-19

ZUO Qiting, WANG Jiaoyang, YANG Feng, et al. Concept analysis of water conservation and calculation methods of water conservation capacity[J]. Advances in Science and Technology of Water Resources, 2022, 42(2): 13-19. (in Chinese)

[3] 刘景红, 郑晓, 樊俊美, 等. 基于SWAT模型的浑河中上游水源涵养服务价值评估[J]. 应用生态学报,2021,32(11):3905-3912 doi: 10.13287/j.1001-9332.202111.007

LIU Jinghong, ZHENG Xiao, FAN Junmei, et al. Evaluation of the value of water retention service in the middle and upper reaches of Hunhe River based on SWAT Model[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 3905-3912. (in Chinese) doi: 10.13287/j.1001-9332.202111.007

[4] 杜佳衡, 王锦. 基于InVEST模型的大理州永平县水生态系统服务功能时空变化分析[J]. 西部林业科学,2021,50(6):91-102 doi: 10.16473/j.cnki.xblykx1972.2021.06.013

DU Jiaheng, WANG Jin. Analysis of spatio-temporal changes of water ecosystem service function in Yongping County, Dali prefecture based on InVEST model[J]. Journal of West China Forestry Science, 2021, 50(6): 91-102. (in Chinese) doi: 10.16473/j.cnki.xblykx1972.2021.06.013

[5]

ARNOLD J G, FOHRER N. SWAT2000: current capabilities and research opportunities in applied watershed modelling[J]. Hydrological Processes, 2005, 19(3): 563-572. doi: 10.1002/hyp.5611

[6]

NIJSSEN B, LETTENMAIER D P, LIANG X, et al. Streamflow simulation for continental-scale river basins[J]. Water Resources Research, 1997, 33(4): 711-724. doi: 10.1029/96WR03517

[7]

TALLIS H, POLASKY S. Mapping and valuing ecosystem services as an approach for conservation and natural-resource management[J]. Annals of the New York Academy of Sciences, 2009, 1162(1): 265-283. doi: 10.1111/j.1749-6632.2009.04152.x

[8]

VIGERSTOL K L, AUKEMA J E. A comparison of tools for modeling freshwater ecosystem services[J]. Journal of Environmental Management, 2011, 92(10): 2403-2409. doi: 10.1016/j.jenvman.2011.06.040

[9] 王云飞, 叶爱中, 乔飞, 等. 水源涵养内涵及估算方法综述[J]. 南水北调与水利科技(中英文),2021,19(6):1041-1052

WANG Yunfei, YE Aizhong, QIAO Fei, et al. Review on connotation and estimation method of water conservation[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(6): 1041-1052. (in Chinese)

[10]

LEH M D K, MATLOCK M D, CUMMINGS E C, et al. Quantifying and mapping multiple ecosystem services change in West Africa[J]. Agriculture, Ecosystems & Environment, 2013, 165: 6-18.

[11]

HAMEL P, GUSWA A J. Uncertainty analysis of a spatially explicit annual water-balance model: case study of the Cape Fear basin, North Carolina[J]. Hydrology and Earth System Sciences, 2015, 19(2): 839-853. doi: 10.5194/hess-19-839-2015

[12]

MARQUES M, BANGASH R F, KUMAR V, et al. The impact of climate change on water provision under a low flow regime: a case study of the ecosystems services in the Francoli river basin[J]. Journal of Hazardous Materials, 2013, 263: 224-232. doi: 10.1016/j.jhazmat.2013.07.049

[13] 李子, 张艳芳. 基于InVEST模型的渭河流域干支流生态系统服务时空演变特征分析[J]. 水土保持学报,2021,35(4):178-185 doi: 10.13870/j.cnki.stbcxb.2021.04.025

LI Zi, ZHANG Yanfang. Spatiotemporal evolution of ecosystem services in the main and tributaries of Weihe River Basin based on InVEST model[J]. Journal of Soil and Water Conservation, 2021, 35(4): 178-185. (in Chinese) doi: 10.13870/j.cnki.stbcxb.2021.04.025

[14] 包玉斌, 李婷, 柳辉, 等. 基于InVEST模型的陕北黄土高原水源涵养功能时空变化[J]. 地理研究,2016,35(4):664-676

BAO Yubin, LI Ting, LIU Hui, et al. Spatial and temporal changes of water conservation of Loess Plateau in northern Shaanxi Province by InVEST model[J]. Geographical Research, 2016, 35(4): 664-676. (in Chinese)

[15] 杨昀则, 田鹏, 张海涛, 等. 基于InVEST模型的甬江流域水源供给功能时空变化特征[J]. 水资源与水工程学报,2021,32(5):107-117 doi: 10.11705/j.issn.1672-643X.2021.05.15

YANG Yunze, TIAN Peng, ZHANG Haitao, et al. Spatiotemporal variation characteristics of water supply function of Yongjiang River Basin based on InVEST Model[J]. Journal of Water Resources & Water Engineering, 2021, 32(5): 107-117. (in Chinese) doi: 10.11705/j.issn.1672-643X.2021.05.15

[16] 蒋桂芹, 毕黎明, 贺逸清. 若尔盖湿地水源涵养时空变化及影响因素[J]. 科学技术与工程,2021,21(29):12688-12694 doi: 10.3969/j.issn.1671-1815.2021.29.044

JIANG Guiqin, BI Liming, HE Yiqing. Spatiotemporal variation of water conservation and its influencing factors in Zoigê wetland[J]. Science Technology and Engineering, 2021, 21(29): 12688-12694. (in Chinese) doi: 10.3969/j.issn.1671-1815.2021.29.044

[17] 田世民, 韩冰, 梁帅, 等. 黄河源区水源涵养有关问题探讨[J]. 水利水运工程学报,2022(1):19-27 doi: 10.12170/20211019002

TIAN Shimin, HAN Bing, LIANG Shuai, et al. Discussion on water conservation capacity in the source area of the Yellow River[J]. Hydro-Science and Engineering, 2022(1): 19-27. (in Chinese) doi: 10.12170/20211019002

[18] 杜世勋, 郭新亚, 荣月静. 基于Budyko假设和SCS-CN模型的河源区水源涵养功能研究[J]. 水土保持研究,2018,25(1):147-152 doi: 10.13869/j.cnki.rswc.2018.01.024

DU Shixun, GUO Xinya, RONG Yuejing. Study on the water conservation function based on Budyko hypothesis and SCS-CN method in the headstream area of the Qinhe Basin[J]. Research of Soil and Water Conservation, 2018, 25(1): 147-152. (in Chinese) doi: 10.13869/j.cnki.rswc.2018.01.024

[19] 吕乐婷, 任甜甜, 孙才志, 等. 1980—2016年三江源国家公园水源供给及水源涵养功能时空变化研究[J]. 生态学报,2020,40(3):993-1003

LÜ Leting, REN Tiantian, SUN Caizhi, et al. Spatial and temporal changes of water supply and water conservation function in Sanjiangyuan National Park from 1980 to 2016[J]. Acta Ecologica Sinica, 2020, 40(3): 993-1003. (in Chinese)

[20] 尹云鹤, 吴绍洪, 赵东升, 等. 过去30年气候变化对黄河源区水源涵养量的影响[J]. 地理研究,2016,35(1):49-57 doi: 10.11821/dlyj201601005

YIN Yunhe, WU Shaohong, ZHAO Dongsheng, et al. Ecosystem water conservation changes in response to climate change in the Source Region of the Yellow River from 1981 to 2010[J]. Geographical Research, 2016, 35(1): 49-57. (in Chinese) doi: 10.11821/dlyj201601005

[21] 潘韬, 吴绍洪, 戴尔阜, 等. 基于InVEST模型的三江源区生态系统水源供给服务时空变化[J]. 应用生态学报,2013,24(1):183-189 doi: 10.13287/j.1001-9332.2013.0140

PAN Tao, WU Shaohong, DAI Erfu, et al. Spatiotemporal variation of water source supply service in Three Rivers Source Area of China based on InVEST model[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 183-189. (in Chinese) doi: 10.13287/j.1001-9332.2013.0140

[22]

LI L, HAO Z C, WANG J H, et al. Impact of future climate change on runoff in the head region of the Yellow River[J]. Journal of Hydrologic Engineering, 2008, 13(5): 347-354. doi: 10.1061/(ASCE)1084-0699(2008)13:5(347)

[23] 唐尧, 祝炜平, 张慧, 等. InVEST模型原理及其应用研究进展[J]. 生态科学,2015,34(3):204-208 doi: 10.14108/j.cnki.1008-8873.2015.03.032

TANG Yao, ZHU Weiping, ZHANG Hui, et al. A review on principle and application of the InVEST model[J]. Ecological Science, 2015, 34(3): 204-208. (in Chinese) doi: 10.14108/j.cnki.1008-8873.2015.03.032

[24] 刘业轩, 石晓丽, 史文娇. 福建省森林生态系统水源涵养服务评估: InVEST模型与meta分析对比[J]. 生态学报,2021,41(4):1349-1361

LIU Yexuan, SHI Xiaoli, SHI Wenjiao. Evaluation of water retention services of forest ecosystems in Fujian Province: comparison between results from the InVEST model and meta-analysis[J]. Acta Ecologica Sinica, 2021, 41(4): 1349-1361. (in Chinese)

[25]

SHARP R, TALLIS H T, RICKETTS T, et al. InVEST 3.2. 0 user’s guide[M]. [S.l.]: The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund, 2015.

[26]

ZHANG L, HICKEL K, DAWES W R, et al. A rational function approach for estimating mean annual evapotranspiration[J]. Water Resources Research, 2004, 40(2): 89-97.

[27] 周文佐. 基于GIS的我国主要土壤类型土壤有效含水量研究[D]. 南京: 南京农业大学, 2003.

ZHOU Wenzuo. A study on available water capacity of main soil types in China based on geographic information system[D]. Nanjing: Nanjing Agricultural University, 2003. (in Chinese)

[28] 余新晓, 周彬, 吕锡芝, 等. 基于InVEST模型的北京山区森林水源涵养功能评估[J]. 林业科学,2012,48(10):1-5 doi: 10.11707/j.1001-7488.20121001

YU Xinxiao, ZHOU Bin, LÜ Xizhi, et al. Evaluation of water conservation function in mountain forest areas of Beijing based on InVEST model[J]. Scientia Silvae Sinicae, 2012, 48(10): 1-5. (in Chinese) doi: 10.11707/j.1001-7488.20121001

[29]

MANN H B. Nonparametric tests against trend[J]. Econometrica, 1945, 13(3): 245-259. doi: 10.2307/1907187

相关知识

2000~2020年黄河流域生物多样性维护功能时空变化及驱动分析
水土保持与水源涵养的概念对比
痕量灌溉控水件数值模拟与实验研究
黄河流域不同区段生态保护与治理的关键问题
土壤结构改良剂对土壤结构和土壤侵蚀的影响
乌兰布和沙漠生态系统服务时空动态与权衡分析
生态涵养促进饮用水源地保护 四川提升湿地蓄水能力
气候变化对开都河流域径流的影响研究
太二酸菜鱼之鱼将全来自河源灯塔盆地
我省划定生态保护红线 30.45%的面积纳入红线管控

网址: 2000—2020年黄河源区水源涵养能力模拟与分析 https://m.huajiangbk.com/newsview1422384.html

所属分类:花卉
上一篇: 涵养水源什么意思
下一篇: 园区大部水源涵养服务能力有所提升