高温干旱下油菜的木质化应答及其在茎与根中的差异
[1]Boerjan W, Ralph J, Baucher M.
Lignin biosynthesis. Annu Rev Plant Biol, 2003, 54:519-546[本文引用:3][2]Scheller H V, Ulvskov P.
Hemicelluloses. Annu Rev Plant Biol, 2010, 61:263-289[本文引用:1][3]Escamilla-Treviño L L, Shen H, Uppalapati S R, Ray T, Tang Y H, Hernand ez T, Yin Y B, Xu Y, Dixon R A.
Switchgrass (Panicum virgatum) possesses a divergent family of cinnamoyl CoA reductases with distinct biochemical properties. New Phytol, 2010, 185:143-155[本文引用:1][4]Humphreys J M, Hemm M R, Chapple C.
New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA, 1999, 96:10045-10050[本文引用:1][5]Weng J K, Mo H P, Chapple C.
Over-expression of F5H in COMT-deficient Arabidopsis leads to enrichment of an unusual lignin and disruption of pollen wall formation. Plant J, 2010, 64:898-911[本文引用:1][6]Rogers L A, Campbell M M.
The genetic control of lignin deposition during plant growth and development. New Phytol, 2004, 164:17-30[本文引用:1][7]Weng J K, Chapple C.
The origin and evolution of lignin biosynthesis. New Phytol, 2010, 187:273-285[本文引用:3][8]Vanholme R, Van Acker R, Boerjan W.
Potential of Arabidopsis systems biology to advance the biofuel field. Trends Biotechnol, 2010, 28:543-547[本文引用:1][9]Huang J L, Gu M, Lai Z B, Fan B F, Shi K, Zhou Y H, Yu J Q, Chen Z X.
Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol, 2010, 153:1526-1538[本文引用:1][10]Graven P, de Koster C G, Boon J J, Bouman F.
Structure and macromolecular composition of the seed coat of the Musaceae. Ann Bot-London, 1996, 77:105-122[本文引用:1][11]Zhong R Q, Taylor J J, Ye Z H.
Disruption of interfascicular fiber differentiation in an Arabidopsis mutant. Plant Cell, 1997, 9:2159-2170[本文引用:1][12]Kenrick P, Crane P R.
The origin and early evolution of plants on land . Nature, 1997, 389:33-39[本文引用:1][13]Weng J K, Akiyama T, Ralph J, Chapple C.
Independent recruitment of an O-methyltransferase for syringyl lignin biosynthesis in Selaginella moellendorffii. Plant Cell, 2011, 23:2708-2724[本文引用:1][14]Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber J H, Ralph J, Boerjan W.
Metabolic engineering of novel lignin in biomass crops. New Phytol, 2012, 196:978-1000[本文引用:1][15]Macmillan C P, Birke H, Bedon F, Pettolino F A.
Lignin deposition in cotton cells:where is the lignin?J Plant Biochem Physiol, 2013, 1:e106. doi:DOI:10.4172/jpbp.1000e106[本文引用:1][16]Chapple C C S, Vogt T, Ellis B E, Somerville C R.
An Arabidopsis mutant defective in the general phenylpropanoid pathway. Plant Cell, 1992, 4:1413-1424[本文引用:3][17]Nakashima J, Chen F, Jackson L, Shadle G, Dixon R A.
Multi-site genetic modification of monolignol biosynthesis in alfalfa (Medicago sativa):effects on lignin composition in specific cell types. New Phytol, 2008, 179:738-750[本文引用:1][18]Li L, Cheng X F, Leshkevich J, Umezawa T, Harding S A, Chiang V L.
The last step of syringyl monolignol biosynthesis in angiosperms is regulated by a novel gene encoding sinapyl alcohol dehydrogenase. Plant Cell, 2001, 13:1567-1586[本文引用:1][19]Tu Y, Rochfort S, Liu Z Q, Ran Y D, Griffith M, Badenhorst P, Louie G V, Bowman M E, Smith K F, Noel J P, Mouradov A, Spangenberg G.
Functional analyses of caffeic acid O-methyltransferase and cinnamoyl-CoA-reductase genes from perennial ryegrass (Lolium perenne). Plant Cell, 2010, 22:3357-3373[本文引用:2][20]Giordano A, Liu Z Q, Panter S N, Dimech A M, Shang Y J, Wijesinghe H, Fulgueras K, Ran Y D, Mouradov A, Rochfort S, Patron N J, Spangenberg G C.
Reduced lignin content and altered lignin composition in the warm season forage grass Paspalum dilatatum by down-regulation of a cinnamoyl CoA reductase gene. Transgenic Res, 2014, 23:503-517[本文引用:1][21]Moura J C M S, Bonine C A V, De Oliveira Fernand es Viana J, Dornelas M C, Mazzafera P.
Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol, 2010, 52:360-376[本文引用:1][22]Moura-Sobczak J, Souza U, Mazzafera P.
Drought stress and changes in the lignin content and composition in Eucalyptus. BMC Proc, 2011, 5:P103[本文引用:2][23]Eynck C, Seguin-Swartz G, Clarke W E, Parkin I A P.
Monolignol biosynthesis is associated with resistance to Sclerotinia sclerotiorum in Camelina sativa. Mol Plant Pathol, 2012, 13:887-899[本文引用:2][24]Olenichenko N, Zagoskina N.
Response of winter wheat to cold:production of phenolic compounds and L-phenylalanine ammonia lyase activity. Appl Biochem Microbiol, 2005, 41:600-603[本文引用:1][25]Wei H U I, Dhanaraj A L, Arora R, Rowland L J, Fu Y, Sun L.
Identification of cold acclimation responsive Rhododendron genes for lipid metabolism, membrane transport and lignin biosynthesis:importance of moderately abundant ESTs in genomic studies. Plant Cell Environ, 2006, 29:558-570[本文引用:1][26]Cruz R T, Jordan W R, Drew M C.
Structural changes and associated reduction of hydraulic conductance in roots of Sorghum bicolor L. following exposure to water deficit. Plant Physiol, 1992, 99:203-212[本文引用:1][27]Riccardi F, Gazeau P, de Vienne D, Zivy M.
Protein changes in response to progressive water deficit in maize:quantitative variation and polypeptide identification. Plant Physiol, 1998, 117:1253-1263[本文引用:1][28]Fan L, Linker R, Gepstein S, Tanimoto E, Yamamoto R, Neumann P M.
Progressive inhibition by water deficit of cell wall extensibility and growth along the elongation zone of maize roots is related to increased lignin metabolism and progressive stelar accumulation of wall phenolics. Plant Physiol, 2006, 140:603-612[本文引用:1][29]Yang L, Wang C C, Guo W D, Li X B, Lu M, Yu C L.
Differential expression of cell wall related genes in the elongation zone of rice roots under water deficit. Rus J Plant Physiol, 2006, 53, 390-395[本文引用:1][30]黄杰恒.
干旱胁迫下油菜抗倒伏相关性状动态变化及木质素关键基因表达特性分析. 西南大学博士学位论文, 重庆, 2013
Huang J H.
Lodging Resistant Traits and Lignin Related Gene Analysis in B. napus under Drought Stress. PhD Dissertation of Southwest University, Chongqing, China, 2013 (in Chinese with English abstract)[本文引用:1][31]徐宇强, 胡轶, 付凤玲, 李晚忱.
干旱胁迫下玉米自交系叶片木质素含量变化及其与耐旱性的关系. 玉米科学, 2007, 15(5):72-75
Xu Y Q, Hu Y, Fu F L, Li W C.
Changes of lignin content in leaf of maize inbred lines under drought stress and its relationship with drought tolerance. J Maize Sci, 2007, 15(5):72-75 (in Chinese with English abstract)[本文引用:1][32]Champolivier L, Merrien A.
Effects of water stress applied at different growth stages to Brassica napus L. var. oleifera on yield, yield components and seed quality. Eur J Agron, 1996, 5:153-160[本文引用:1][33]Chen L, Auh C, Chen F, Cheng X F, Aljoe H, Dixon R A, Wang Z Y.
Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages. J Agric Food Chem, 2002, 50:5558-5565[本文引用:1][34]Foster C E, Martin T M, Pauly M.
Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part I:lignin. J Visual Exp, 2010, (37):1745. doi:DOI:10.3791/1745[本文引用:3][35]Hatfield R D, Grabber J, Ralph J, Brei K.
Using the acetyl bromide assay to determine lignin concentrations in herbaceous plants:some cautionary notes. J Agric Food Chem, 1999, 47:628-632[本文引用:2][36]Chang X F, Chand ra R, Berleth T, Beatson R P.
Rapid, microscale, acetyl bromide-based method for high-throughput determination of lignin content in Arabidopsis thaliana. J Agric Food Chem, 2008, 56:6825-6834[本文引用:3][37]Fukushima R S, Hatfield R D.
Extraction and isolation of lignin for utilization as a stand ard to determine lignin concentration using the acetyl bromide spectrophotometric method. J Agric Food Chem, 2001, 49:3133-3139[本文引用:2][38]Lapierre C, Pollet B, Roland o C.
New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Res Chem Intermediat, 1995, 21:397-412[本文引用:3][39]Yosef E, Ben-Ghedalia D.
Changes in thioacidolysis products of lignin in wheat straw as affected by SO2 treatment and passage through the gastro-intestine of sheep. Anim Feed Sci Tech, 1999, 80:55-65[本文引用:2][40]Robinson A R, Mansfield S D.
Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J, 2009, 58:706-714[本文引用:2][41]Yue F X, Lu F C, Sun R C, Ralph J.
Syntheses of lignin-derived thioacidolysis monomers and their uses as quantitation stand ards. J Agric Food Chem, 2012, 60:922-928[本文引用:2][42]Nakano J, Meshitsuka G. The detection of lignin. In:Lin S ed, Methods in Lignin Chemistry. Berlin, Germany:Springer-Verlag, pp 23-32[本文引用:1][43]Bart R S, Chern M, Vega-Sanchez M E, Canlas P, Ronald P C.
Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae. PLoS Genet, 2010, 6:110-117[本文引用:1][44]Leplé J C, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang K Y, Kim H, Ruel K, Lefebvre A, Joseleau J P, Grima-Pettenati J, De Rycke R, Andersson-Gunneras S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield S D, Ralph J, Pilate G, Boerjan W.
Downregulation of cinnamoyl-coenzyme A reductase in poplar:multiple-level phenotyping reveals effects on cell wall polymer metabolism and structure. Plant Cell, 2007, 19:3669-3691[本文引用:1][45]Ruel K, Berrio-Sierra J, Derikvand M M, Pollet B, Thevenin J, Lapierre C, Jouanin L, Joseleau J P.
Impact of CCR1 silencing on the assembly of lignified secondary walls in Arabidopsis thaliana. New Phytol, 2009, 184:99-113[本文引用:1]
相关知识
水仙转化系统的建立与Agamous基因的克隆及油菜素内脂应答基因鉴定与分析
干旱胁迫下棉花幼苗转录因子BES1/BZR1对外源油菜素内酯的响应表达特征
差异蛋白质组学技术在植物响应低温胁迫研究中的应用
不同轮作和氮肥分配季节下土壤氮素供应和油菜氮素吸收差异
油菜幼苗下胚轴、根和子叶愈伤组织器官分化的初步研究
林科院在浙江红花油茶果实木质化调控研究方面取得进展
有机肥分解及其对土壤有机碳矿化影响的模拟研究
干旱对油菜花期生理特性及产量的影响
植物油菜素内酯信号通路与植物免疫相关研究进展
小麦花后干旱胁迫下淀粉粒微观特性变化及其机理研究
网址: 高温干旱下油菜的木质化应答及其在茎与根中的差异 https://m.huajiangbk.com/newsview1438794.html