摘要:
根结线虫Meloidogyne spp. 是严重威胁农业生产的重要病原生物,对世界上大多数作物都存在负面影响。在我国,随着保护地栽培模式的扩大及作物复种指数的不断提高,根结线虫病的发生日趋严重,而目前的管理措施尚不能完全控制根结线虫的危害。使用化学杀线虫剂仍然是目前防治根结线虫最常见的短期管理策略。本文总结了目前我国作物根结线虫病的发生现状,介绍了生产中防治该病害的主要化学药剂,分析了其化学防治存在的主要问题,并讨论了目前化学杀线虫剂及其应用技术的优化;展望了未来根结线虫化学防治的研究方向;提出根结线虫的化学防治应该与其他管理措施相结合,实现根结线虫高效、安全、可持续发展的综合治理。
Abstract:
Root-knot nematodes (Meloidogyne spp.) are important pathogens that seriously harm agricultural production and negatively affect almost every crop in the world. In China, root-knot nematodes are becoming more and more serious with the expansion of protected cultivation and the continuous increase of crop multiple cropping index. Current management practices are not enough to completely control root-knot nematodes. Chemical nematicides are still the most common short-term management strategy for root knot nematodes. In this review, the recent research progresses of the current occurrence of root-knot nematodes and control agents were summarized, including the main problems in the chemical control and the optimization of chemical agents and application technology. The outlook for the development of chemical control methods against root knot nematodes was envisaged: chemical control of root-knot nematodes should be combined with other management strategies to achieve efficient, safe and sustainable integrated management.
图 1 根结线虫化学防治研究内容
Figure 1. Research on chemical control of root-knot nematodes
图 2 中国防治根结线虫病的杀线虫剂产品在作物上的登记情况 (2023年10月1日)
Figure 2. Registration of nematicide products for root-knot nematodes control on crops in China (Oct. 1, 2023)
图 3 根结线虫危害不同作物
Figure 3. Different kind of crops infected by root-knot nematode
图 4 杀虫剂抗性行动委员会线虫工作组公布杀线虫剂作用方式分类 (2021年4月) [34]
Figure 4. Classification of nematicide MOA published by the IRAC nematode working group (April, 2021) [34]
表 1 当前登记用于防治作物根结线虫病的药剂(2023年10月1日)
Table 1 Nematicides registered to control root-knot nematodes (Oct. 1, 2023)
药剂SMANT G, HELDER J, GOVERSE A. Parallel adaptations and common host cell responses enabling feeding of obligate and facultative plant parasitic nematodes[J]. Plant J, 2018, 93(4): 686-702. doi: 10.1111/tpj.13811
[2]HASSAN M A, PHAM T H, SHI H L, et al. Nematodes threats to global food security[J]. Acta Agric Scand Sect B: Soil Plant Sci, 2013, 63(5): 420-425.
[3]XIANG N, LAWRENCE K S, KLOEPPER J W, et al. Biological control of Meloidogyne incognita by spore-forming plant growth-promoting rhizobacteria on cotton[J]. Plant Dis, 2017, 101(5): 774-784. doi: 10.1094/PDIS-09-16-1369-RE
[4]SZITENBERG A, SALAZAR-JARAMILLO L, BLOK V C, et al. Comparative genomics of apomictic root-knot nematodes: hybridization, ploidy, and dynamic genome change[J]. Genome Biol Evol, 2017, 9(10): 2844-2861. doi: 10.1093/gbe/evx201
[5]JONES J T, HAEGEMAN A, DANCHIN E G J, et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Mol Plant Pathol, 2013, 14(9): 946-961. doi: 10.1111/mpp.12057
[6]CALDERÓN-URREA A, VANHOLME B, VANGESTEL S, et al. Early development of the root-knot nematode Meloidogyne incognita[J]. BMC Dev Biol, 2016, 16: 10. doi: 10.1186/s12861-016-0109-x
[7] 胡玉金, 冯敏, 郭文秀, 等. 作物根结线虫病害综合防治技术概述[J]. 山东农业科学, 2019, 51(4): 149-156.HU Y J, FENG M, GUO W X, et al. Overview of integrated control techniques of root-knot nematode disease[J]. Shandong Agric Sci, 2019, 51(4): 149-156.
[8]DONG S, QIAO K, ZHU Y K, et al. Managing Meloidogyne incognita and Bemisia tabaci with thiacloprid in cucumber crops in China[J]. Crop Prot, 2014, 58: 1-5.
[9]HAJIHASSANI A, DAVIS R F, TIMPER P. Evaluation of selected nonfumigant nematicides on increasing inoculation densities of Meloidogyne incognita on cucumber[J]. Plant Dis, 2019, 103(12): 3161-3165. doi: 10.1094/PDIS-04-19-0836-RE
[10]MEDINA-CANALES M G, TERROBA-ESCALANTE P, MANZANILLA-LÓPEZ R H , et al. Assessment of three strategies for the management of Meloidogyne arenaria on carrot in Mexico using Pochonia chlamydosporia var. mexicana under greenhouse conditions[J]. Biocontrol Sci Technol, 2019, 29(7): 671-685.
[11] 宫远福. 东北地区根结线虫的种类分布及南方根结线虫氯离子通道基因分析[D]. 沈阳: 沈阳农业大学, 2020.GONG Y F. Species distribution of root-knot nematodes in Northeast China and analysis of chloride channel genes in Meloidogyne incognita[D]. Shenyang: Shenyang Agricultural University, 2020.
[12] 卢志军. 蔬菜根结线虫病生物熏蒸控制作用研究[D]. 北京: 中国农业大学, 2016.LU Z J. Control efficiency of biological fumigation against vegetable root-knot nematodes[D]. Beijing: China Agricultural University, 2016.
[13] 崔鑫, 岳向国, 李斌, 等. 蔬菜作物根结线虫病害防治研究进展[J]. 中国蔬菜, 2017(10): 31-38.CUI X, YUE X G, LI B, et al. Research progress on controlling root-knot nematode in vegetable crops[J]. China Veg, 2017(10): 31-38.
[14] 李周容, 龙海波, 孙燕芳, 等. 海南省蔬菜根结线虫发生种类与分布[J]. 植物保护, 2020, 46(6): 213-216.LI Z R, LONG H B, SUN Y F, et al. Occurrence and distribution of the root-knot nematode species in vegetables in Hainan Province[J]. Plant Prot, 2020, 46(6): 213-216.
[15]YANG B, EISENBACK J D. Meloidogyne enterolobii n. sp. (Meloidogynidae), a root-knot nematode parasitizing pacara earpod tree in China[J]. J Nematol, 1983, 15(3): 381-391.
[16]SIKANDAR A, JIA L M, WU H Y, et al. Meloidogyne enterolobii risk to agriculture, its present status and future prospective for management[J]. Front Plant Sci, 2023, 13: 1093657. doi: 10.3389/fpls.2022.1093657
[17]KIEWNICK S, DESSIMOZ M, FRANCK L. Effects of the Mi-1 and the N root-knot nematode-resistance gene on infection and reproduction of Meloidogyne enterolobii on tomato and pepper cultivars[J]. J Nematol, 2009, 41(2): 134-139.
[18]PHILBRICK A N, ADHIKARI T B, LOUWS F J, et al. Meloidogyne enterolobii, a major threat to tomato production: current status and future prospects for its management[J]. Front Plant Sci, 2020, 11: 606395. doi: 10.3389/fpls.2020.606395
[19] 陈慧, 王会芳, 陈绵才. 象耳豆根结线虫的研究进展[J]. 贵州农业科学, 2016, 44(5): 51-55.CHEN H, WANG H F, CHEN M C. Research progress of Meloidogyne enterolobii[J]. Guizhou Agric Sci, 2016, 44(5): 51-55.
[20]WANG Y, WANG X Q, XIE Y, et al. First report of Meloidogyne enterolobii on hot pepper in China[J]. Plant Dis, 2015, 99(4): 557.
[21] 王剑, 宋志强, 成飞雪, 等. 湖南省辣椒上首次发现象耳豆根结线虫[J]. 植物保护, 2015, 41(4): 180-183.WANG J, SONG Z Q, CHENG F X, et al. First report of Meloidogyne enterolobii on pepper in Hunan Province[J]. Plant Prot, 2015, 41(4): 180-183.
[22] 刘晨, 陈志杰, 杨艺炜, 等. 陕西省首次发现象耳豆根结线虫危害洛南白菜[J]. 植物保护, 2020, 46(5): 156-159.LIU C, CHEN Z J, YANG Y W, et al. First report of Meloidogyne enterolobii infecting cabbage in Luonan County, Shaanxi Province[J]. Plant Prot, 2020, 46(5): 156-159.
[23] 中国农药信息网. 农药登记数据: 防治对象-根结线虫[EB/OL]. [2023-10-01]. http://www.chinapesticide.org.cn/myquery/queryselect.China Pesticide Information Network. Pesticide registration, control disease: root-knot nematodes [EB/OL]. [2023-10-01]. http://www.chinapesticide.org.cn/myquery/queryselect.
[24]LI W H, LI H X, LIU Y G, et al. First report of northern root-knot nematode Meloidogyne hapla on Codonopsis pilosula in China[J]. Plant Dis, 2020, 104(8): 2295.
[25]CHITWOOD D J. Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture-Agricultural Research Service[J]. Pest Manag Sci, 2003, 59(6-7): 748-753. doi: 10.1002/ps.684
[26] 李茂胜, 严叔平, 张琳, 等. 枯萎病菌和根结线虫对黄瓜复合侵染研究[J]. 福建农业学报, 2001, 16(2): 28-31.LI M S, YAN S P, ZHANG L, et al. Mixed infection caused by Meloidogyne and Fusarium on cucumber[J]. Fujian J Agric Sci, 2001, 16(2): 28-31.
[27] 蒋妮, 高微微, 缪剑华. 病原真菌与根结线虫对罗汉果的复合侵染研究[J]. 中药材, 2011, 34(1): 11-15.JIANG N, GAO W W, MIAO J H. Mixed infection caused by Meloidogyne and pathogenic fungi on Siraitia grosvenorii[J]. J Chin Med Mater, 2011, 34(1): 11-15.
[28]HUA G K H, TIMPER P, JI P. Meloidogyne incognita intensifies the severity of Fusarium wilt on watermelon caused by Fusarium oxysporum f. sp. niveum[J]. Can J Plant Pathol, 2019, 41(2): 261-269. doi: 10.1080/07060661.2018.1564939
[29]LI B X, REN Y P, ZHANG D X, et al. Modifying the formulation of abamectin to promote its efficacy on southern root-knot nematode ( Meloidogyne incognita) under blending-of-soil and root-irrigation conditions[J]. J Agric Food Chem, 2018, 66(4): 799-805. doi: 10.1021/acs.jafc.7b04146
[30] 刘广. 阿维菌素纳米囊的制备及对黄瓜根结线虫病防治作用[D]. 泰安: 山东农业大学, 2020.LIU G. Preparation of abamectin nanocapsules and its against root-knot nematode (Meloidogyne incognita) disease[D]. Taian: Shandong Agricultural University, 2020.
[31] 樊颖伦, 张维国, 吕山花, 等. 山东保护地蔬菜根结线虫种类鉴定[J]. 华北农学报, 2009, 24(S1): 262-264. doi: 10.7668/hbnxb.2009.S1.061FAN Y L, ZHANG W G, LU S H, et al. Identification of the root-knot nematode from vegetables in greenhouses in Shandong[J]. Acta Agric Boreali Sin, 2009, 24(S1): 262-264. doi: 10.7668/hbnxb.2009.S1.061
[32] 程永, 高德良, 苗建强, 等. 山东省植物根结线虫鉴定、危害植物种类及药剂敏感性检测[J]. 植物保护学报, 2011, 38(5): 461-465.CHENG Y, GAO D L, MIAO J Q, et al. Root-knot nematode species, host plants and sensitivity to commonly-used nematicides in Shandong Province[J]. J Plant Prot, 2011, 38(5): 461-465.
[33] 路洪宝. 滴灌施用氟吡菌酰胺防治黄瓜根结线虫病应用技术研究[D]. 泰安: 山东农业大学, 2018.LU H B. Study on the drip irrigation of fluopyram against Meloidogyne incognita on cucumber[D]. Taian: Shandong Agricultural University, 2018.
[34]RAJASEKHARAN S K, KIM S, KIM J C, et al. Nematicidal activity of 5-iodoindole against root-knot nematodes[J]. Pestic Biochem Physiol, 2020, 163: 76-83. doi: 10.1016/j.pestbp.2019.10.012
[35]Nematodes Archives | IRAC[EB/OL]. [2023-10-01]. https://irac-online.org/irac-nematicide-moa-classification-now-available/.
[36]QIAO K, WANG Z T, WEI M, et al. Evaluation of chemical alternatives to methyl bromide in tomato crops in China[J]. Crop Prot, 2015, 67: 223-227. doi: 10.1016/j.cropro.2014.10.017
[37]JI X X, LI J J, DONG B, et al. Evaluation of fluopyram for southern root-knot nematode management in tomato production in China[J]. Crop Prot, 2019, 122: 84-89. doi: 10.1016/j.cropro.2019.04.028
[38] 毛连纲. 新型熏蒸剂的毒力评价及应用技术研究[D]. 北京: 中国农业科学院, 2015.MAO L G. Toxicity evaluation of new fumigants and research on the application technology[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
[39]FANG W S, WANG Q X, YAN D D, et al. Environmental factors and soil amendment affect the decomposition rate of dazomet fumigant[J]. J Environ Qual, 2018, 47(5): 1223-1231. doi: 10.2134/jeq2018.01.0003
[40] 赵文, 赵一杰, 王惟萍, 等. 实验室条件下威百亩及异硫氰酸甲酯在土壤中的降解特性[J]. 农药学学报, 2013, 15(5): 567-573. doi: 10.3969/j.issn.1008-7303.2013.05.14ZHAO W, ZHAO Y J, WANG W P, et al. Study on degradation of metam sodium and methyl isothiocyanate in soil under laboratory conditions[J]. Chin J Pestic Sci, 2013, 15(5): 567-573. doi: 10.3969/j.issn.1008-7303.2013.05.14
[41]FANG W S, WANG X L, HUANG B, et al. Comparative analysis of the effects of five soil fumigants on the abundance of denitrifying microbes and changes in bacterial community composition[J]. Ecotoxicol Environ Saf, 2020, 187: 109850. doi: 10.1016/j.ecoenv.2019.109850
[42] 马涛涛, 颜冬冬, 毛连纲, 等. 4种熏蒸剂处理对土壤可溶性有机氮和微生物量碳氮的影响[J]. 中国生态农业学报, 2014, 22(2): 159-164. doi: 10.3724/SP.J.1011.2014.30784MA T T, YAN D D, MAO L G, et al. Effects of four fumigants on dissolved soil nitrogen transformation and microbial biomass[J]. Chin J Eco Agric, 2014, 22(2): 159-164. doi: 10.3724/SP.J.1011.2014.30784
[43]HUANG B, YAN D D, WANG Q X, et al. Effects of dazomet fumigation on soil phosphorus and the composition of phoD-harboring microbial communities[J]. J Agric Food Chem, 2020, 68(18): 5049-5058. doi: 10.1021/acs.jafc.9b08033
[44]BRENNAN R J B, GLAZE-CORCORAN S, WICK R, et al. Biofumigation: an alternative strategy for the control of plant parasitic nematodes[J]. J Integr Agric, 2020, 19(7): 1680-1690. doi: 10.1016/S2095-3119(19)62817-0
[45] 纪春涛, 姜兴印, 房锋, 等. 噻唑膦对冬暖式大棚土壤酶活性的影响[J]. 农药学学报, 2009, 11(1): 137-140. doi: 10.3969/j.issn.1008-7303.2009.01.024JI C T, JIANG X Y, FANG F, et al. Effects of fosthiazate on activity of soil enzymes in vegetable greenhouse[J]. Chin J Pestic Sci, 2009, 11(1): 137-140. doi: 10.3969/j.issn.1008-7303.2009.01.024
[46]HUANG W K, WU Q S, PENG H, et al. Mutations in acetylcholinesterase2 (ace2) increase the insensitivity of acetylcholinesterase to fosthiazate in the root-knot nematode Meloidogyne incognita[J]. Sci Rep, 2016, 6: 38102. doi: 10.1038/srep38102
[47]JING T F, ZHANG D X, PAN S H, et al. Phenyl isocyanate-modified avermectin B1a improves the efficacy against plant-parasitic nematode diseases by facilitating its soil mobility[J]. ACS Sustainable Chem Eng, 2020, 8(5): 2310-2319. doi: 10.1021/acssuschemeng.9b07243
[48]GANNON T W, JEFFRIES M D, AHMED K A. Irrigation and soil surfactants affect abamectin distribution in soil[J]. Crop Sci, 2017, 57(2): 573-580. doi: 10.2135/cropsci2016.05.0320
[49]DE OLIVEIRA SILVA J , LOFFREDO A, DA ROCHA M R, et al. Efficacy of new nematicides for managing Meloidogyne incognita in tomato crop[J]. J Phytopathol, 2019, 167(5): 295-298.
[50]OKA Y, SAROYA Y. Effect of fluensulfone and fluopyram on the mobility and infection of second-stage juveniles of Meloidogyne incognita and M. javanica[J]. Pest Manag Sci, 2019, 75(8): 2095-2106. doi: 10.1002/ps.5399
[51]WRAM C L, ZASADA I A. Short-term effects of sublethal doses of nematicides on Meloidogyne incognita[J]. Phytopathology, 2019, 109(9): 1605-1613. doi: 10.1094/PHYTO-11-18-0420-R
[52]FASKE T R, HURD K. Sensitivity of Meloidogyne incognita and Rotylenchulus reniformis to fluopyram[J]. J Nematol, 2015, 47(4): 316-321.
[53]KEARN J, LUDLOW E, DILLON J, et al. Fluensulfone is a nematicide with a mode of action distinct from anticholinesterases and macrocyclic lactones[J]. Pestic Biochem Physiol, 2014, 109: 44-57. doi: 10.1016/j.pestbp.2014.01.004
[54]MORRIS K A, LANGSTON D B, DAVIS R F, et al. Efficacy of various application methods of fluensulfone for managing root-knot nematodes in vegetables[J]. J Nematol, 2016, 48(2): 65-71. doi: 10.21307/jofnem-2017-010
[55]CHEN X X, LI X, PANG K, et al. Dissipation behavior and residue distribution of fluazaindolizine and its seven metabolites in tomato ecosystem based on SAX SPE procedure using HPLC-QqQ-MS/MS technique[J]. J Hazard Mater, 2018, 342: 698-704. doi: 10.1016/j.jhazmat.2017.08.056
[56]WU H Y, DE OLIVEIRA SILVA J, BECKER J S, et al. Fluazaindolizine mitigates plant-parasitic nematode activity at sublethal dosages[J]. J Pest Sci, 2021, 94(2): 573-583. doi: 10.1007/s10340-020-01262-2
[57]OKA Y. Nematicidal activity of fluensulfone against some migratory nematodes under laboratory conditions[J]. Pest Manag Sci, 2014, 70(12): 1850-1858. doi: 10.1002/ps.3730
[58]SCHLEKER A S S, RIST M, MATERA C, et al. Mode of action of fluopyram in plant-parasitic nematodes[J]. Sci Rep, 2022, 12(1): 11954. doi: 10.1038/s41598-022-15782-7
[59]WRAM C L, HESSE C N, ZASADA I A. Transcriptional response of Meloidogyne incognita to non-fumigant nematicides[J]. Sci Rep, 2022, 12(1): 9814. doi: 10.1038/s41598-022-13815-9
[60]LI G H, ZHANG K Q. Natural nematicidal metabolites and advances in their biocontrol capacity on plant parasitic nematodes[J]. Nat Prod Rep, 2023, 40(3): 646-675. doi: 10.1039/D2NP00074A
[61]FAN Z Q, QIN Y K, LIU S, et al. The bioactivity of new chitin oligosaccharide dithiocarbamate derivatives evaluated against nematode disease ( Meloidogyne incognita)[J]. Carbohydr Polym, 2019, 224: 115155. doi: 10.1016/j.carbpol.2019.115155
[62]FAN Z Q, QIN Y K, LIU S, et al. Chitosan oligosaccharide fluorinated derivative control root-knot nematode ( Meloidogyne incognita) disease based on the multi-efficacy strategy[J]. Mar Drugs, 2020, 18(5): 273. doi: 10.3390/md18050273
[63]CHEN J X, CHEN Y Z, GAN X H, et al. Synthesis, nematicidal evaluation, and 3D-QSAR analysis of novel 1,3,4-oxadiazole-cinnamic acid hybrids[J]. J Agric Food Chem, 2018, 66(37): 9616-9623. doi: 10.1021/acs.jafc.8b03020
[64]LI W, LI J H, SHEN H F, et al. Synthesis, nematicidal activity and docking study of novel chromone derivatives containing substituted pyrazole[J]. Chin Chem Lett, 2018, 29(6): 911-914. doi: 10.1016/j.cclet.2017.10.011
[65]SUN H Y, LI H, WANG J Y, et al. Synthesis and nematicidal activity of piperazinedione derivatives based on the natural product Barettin[J]. Chin Chem Lett, 2018, 29(6): 977-980. doi: 10.1016/j.cclet.2017.10.015
[66]CHENG X G, HE H Q, WANG W X, et al. Semi-synthesis and characterization of some new matrine derivatives as insecticidal agents[J]. Pest Manag Sci, 2020, 76(8): 2711-2719. doi: 10.1002/ps.5817
[67]HUA X W, LIU N N, ZHOU S, et al. Design, synthesis, and biological activity of novel aromatic amide derivatives containing sulfide and sulfone substructures[J]. Engineering, 2020, 6(5): 553-559. doi: 10.1016/j.eng.2019.09.011
[68] 陈学文, 甘秀海, 陈吉祥, 等. 新型含三氟丁烯的1,3,4-噁二唑(噻二唑)硫醚类衍生物的合成及杀线虫活性研究[J]. 有机化学, 2017, 37(9): 2343-2351. doi: 10.6023/cjoc201703022CHEN X W, GAN X H, CHEN J X, et al. Synthesis and nematicidal activity of novel 1,3,4-oxadiazole (thiadiazole) thioether derivatives containing trifluorobuten moiety[J]. Chin J Org Chem, 2017, 37(9): 2343-2351. doi: 10.6023/cjoc201703022
[69]CHEN J X, GAN X H, YI C F, et al. Synthesis, nematicidal activity, and 3D-QSAR of novel 1,3,4-oxadiazole/thiadiazole thioether derivatives[J]. Chin J Chem, 2018, 36(10): 939-944. doi: 10.1002/cjoc.201800282
[70]ZHAO W, SHEN Z H, XING J H, et al. Synthesis and nematocidal activity of novel 1-(3-chloropyridin-2-yl)-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives[J]. Chem Pap, 2017, 71(5): 921-928. doi: 10.1007/s11696-016-0012-8
[71]LIU X H, ZHAO W, SHEN Z H, et al. Synthesis, nematocidal activity and SAR study of novel difluoromethylpyrazole carboxamide derivatives containing flexible alkyl chain moieties[J]. Eur J Med Chem, 2017, 125: 881-889. doi: 10.1016/j.ejmech.2016.10.017
[72]WANG G L, CHEN X L, DENG Y Y, et al. Synthesis and nematicidal activities of 1,2,3-benzotriazin-4-one derivatives against Meloidogyne incognita[J]. J Agric Food Chem, 2015, 63(31): 6883-6889. doi: 10.1021/acs.jafc.5b01762
[73]WANG G L, CHEN X, CHANG Y N, et al. Synthesis of 1,2,3-benzotriazin-4-one derivatives containing spirocyclic indoline-2-one moieties and their nematicidal evaluation[J]. Chin Chem Lett, 2015, 26(12): 1502-1506. doi: 10.1016/j.cclet.2015.10.024
[74]CHEN X L, JIA H W, LI Z, et al. Synthesis and nematicidal evaluation of 1,2,3-benzotriazin-4-one derivatives containing piperazine as linker against Meloidogyne incognita[J]. Chin Chem Lett, 2019, 30(6): 1207-1213. doi: 10.1016/j.cclet.2019.02.033
[75]CHEN X L, ZHOU Z, LI Z, et al. Synthesis and nematicidal activities of 1,2,3-benzotriazin-4-one containing 4,5-dihydrothiazole-2-thiol derivatives against Meloidogyne incognita[J]. Phosphorus Sulfur Silicon Relat Elem, 2019, 195(3): 194-200.
[76]ZHANG R F, GUO W, WANG G L, et al. Synthesis and nematicidal activities of 1,2,3-benzotriazin-4-one derivatives containing benzo[d][1,2,3] thiadiazole against Meloidogyne incognita[J]. Bioorg Med Chem Lett, 2020, 30(17): 127369. doi: 10.1016/j.bmcl.2020.127369
[77]KAUR K, UTREJA D, DHILLON N K, et al. N-alkyl isatin derivatives: synthesis, nematicidal evaluation and protein target identifications for their mode of action[J]. Pestic Biochem Physiol, 2021, 171: 104736. doi: 10.1016/j.pestbp.2020.104736
[78]KAUR J, UTREJA D, DHILLON N K, et al. Synthesis of indole derivatives and their evaluation against root knot nematode Meloidogyne incognita[J]. Lett Org Chem, 2019, 16(9): 759-767. doi: 10.2174/1570178616666190219131042
[79]TOCCO G, ELOH K, ONNIS V, et al. Haloacetophenones as newly potent nematicides against Meloidogyne incognita[J]. Ind Crops Prod, 2017, 110: 94-102. doi: 10.1016/j.indcrop.2017.06.003
[80]TOCCO G, ELOH K, LAUS A, et al. Electron-deficient alkynes as powerful tools against root-knot nematode Melodogyne incognita: nematicidal activity and investigation on the mode of action[J]. J Agric Food Chem, 2020, 68(40): 11088-11095. doi: 10.1021/acs.jafc.0c00835
[81]KAUR J, UTREJA D, DHILLON N K, et al. Synthesis of series of triazine derivatives and their evaluation against root knot nematode Meloidogyne incognita[J]. Lett Org Chem, 2018, 15(10): 870-877. doi: 10.2174/1570178615666180330155049
[82]CHEN G Q, XIA Y F, YANG J M, et al. Controlled synthesis of N, N-dimethylarylsulfonamide derivatives as nematicidal agents[J]. J Asian Nat Prod Res, 2020, 22(12): 1197-1206. doi: 10.1080/10286020.2019.1694513
[83]LU H, ZHOU X, WANG L, et al. Synthesis and antibacterial evaluation of N-phenylacetamide derivatives containing 4-arylthiazole moieties[J]. Molecules, 2020, 25(8): 1772. doi: 10.3390/molecules25081772
[84]JIA H W, GUO W, LI W, et al. Design, synthesis, and nematicidal activities of novel 1,3-thiazin(thiazol)-4-one derivatives against Meloidogyne incognita[J]. J Chem Res, 2019, 43(5-6): 161-169. doi: 10.1177/1747519819857506
[85]CAO X F, WANG M X, LI Z, et al. Synthesis, nematicidal evaluation, and the structure-activity relationship study of aurone derivatives[J]. J Agric Food Chem, 2023, 71(23): 8757-8768. doi: 10.1021/acs.jafc.3c00627
[86]BURNS A R, BAKER R J, KITNER M, et al. Selective control of parasitic nematodes using bioactivated nematicides[J]. Nature, 2023, 618(7963): 102-109. doi: 10.1038/s41586-023-06105-5
[87]REN L R, HUANG B, FANG W S, et al. Multi-encapsulation combination of O/W/O emulsions with polyurea microcapsules for controlled release and safe application of dimethyl disulfide[J]. Acs Appl Mater Interfaces, 2021, 13(1): 1333-1344. doi: 10.1021/acsami.0c16613
[88]FU Z N, CHEN K, LI L, et al. Spherical and spindle-like abamectin-loaded nanoparticles by flash nanoprecipitation for southern root-knot nematode control: preparation and characterization[J]. Nanomaterials, 2018, 8(6): 449. doi: 10.3390/nano8060449
[89] 潘华, 李文婧, 吴立涛, 等. 新型纳米农药制剂载体材料的研究进展[J]. 材料导报, 2020, 34(S2): 1099-1103.PAN H, LI W J, WU L T, et al. Review of new nanocarriers for pesticide formulations[J]. Mater Rep, 2020, 34(S2): 1099-1103.
[90]CHARIOU P L, DOGAN A B, WELSH A G, et al. Soil mobility of synthetic and virus-based model nanopesticides[J]. Nat Nanotechnol, 2019, 14(7): 712-718. doi: 10.1038/s41565-019-0453-7
[91]CAO J, GUENTHER R H, SIT T L, et al. Development of abamectin loaded plant virus nanoparticles for efficacious plant parasitic nematode control[J]. ACS Appl Mater Interfaces, 2015, 7(18): 9546-9553. doi: 10.1021/acsami.5b00940
[92]ZHANG D X, LIU G, JING T F, et al. Lignin-modified electronegative epoxy resin nanocarriers effectively deliver pesticides against plant root-knot nematodes ( Meloidogyne incognita)[J]. J Agric Food Chem, 2020, 68(47): 13562-13572. doi: 10.1021/acs.jafc.0c01736
[93]CAO J, GUENTHER R H, SIT T L, et al. Development of abamectin loaded lignocellulosic matrices for the controlled release of nematicide for crop protection[J]. Cellulose, 2016, 23(1): 673-687. doi: 10.1007/s10570-015-0817-6
[94]KALAISELVI D, MOHANKUMAR A, SHANMUGAM G, et al. Green synthesis of silver nanoparticles using latex extract of Euphorbia tirucalli: a novel approach for the management of root knot nematode, Meloidogyne incognita[J]. Crop Prot, 2019, 117: 108-114. doi: 10.1016/j.cropro.2018.11.020
[95]FARIAS B V, PIRZADA T, MATHEW R, et al. Electrospun polymer nanofibers as seed coatings for crop protection[J]. ACS Sustainable Chem Eng, 2019, 7(24): 19848-19856. doi: 10.1021/acssuschemeng.9b05200
[96]FU Z N, LI L, WANG Y M, et al. Direct preparation of drug-loaded mesoporous silica nanoparticles by sequential flash nanoprecipitation[J]. Chem Eng J, 2020, 382: 122905. doi: 10.1016/j.cej.2019.122905
[97] 陈慧萍, 曹立冬, 赵鹏跃, 等. 阿维菌素缓控释载药体系的构建及应用研究进展[J]. 农药学学报, 2021, 23(1): 42-59. doi: 10.16801/j.issn.1008-7303.2021.0040CHEN H P, CAO L D, ZHAO P Y, et al. Research progress of construction and application of sustained and controlled release systems of avermectin[J]. Chin J Pestic Sci, 2021, 23(1): 42-59. doi: 10.16801/j.issn.1008-7303.2021.0040
[98]RAJWADE J M, CHIKTE R G, PAKNIKAR K M. Nanomaterials: new weapons in a crusade against phytopathogens[J]. Appl Microbiol Biotechnol, 2020, 104(4): 1437-1461. doi: 10.1007/s00253-019-10334-y
[99] 孙海, 张保常, 赵昆, 等. 41.7%氟吡菌酰胺悬浮液不同施药方式对番茄根结线虫的防治效果[J]. 蔬菜, 2021(2): 52-55.SUN H, ZHANG B C, ZHAO K, et al. Control effect of different application methods of 41.7% fluopyram suspension on tomato root knot nematode[J]. Vegetables, 2021(2): 52-55.
[100] 李秋捷, 黄金玲, 陆秀红, 等. 滴灌法施药防治农作物根结线虫病的研究进展[J]. 中国植保导刊, 2018, 38(6): 62-66. doi: 10.3969/j.issn.1672-6820.2018.06.013LI Q J, HUANG J L, LU X H, et al. Research progress on pesticide applying with drip irrigation system against root knot nematode[J]. China Plant Prot, 2018, 38(6): 62-66. doi: 10.3969/j.issn.1672-6820.2018.06.013
[101]LI J Z, WANG C C, BANGASH S H, et al. Efficacy of fluopyram applied by chemigation on controlling eggplant root-knot nematodes ( Meloidogyne spp.) and its effects on soil properties[J]. PLoS One, 2020, 15(7): e0235423. doi: 10.1371/journal.pone.0235423
[102] 任玉鹏. 滴灌施用阿维菌素防治番茄根结线虫病的可行性评价[D]. 泰安: 山东农业大学, 2016.REN Y P. Feasibility evaluation of applying abamectin by drip irrigation for Meloidogyne incognita disease[D]. Taian: Shandong Agricultural University, 2016.
[103]BUI H X, DESAEGER J A. Efficacy of five nematicides against root-knot nematode when applied via single and double drip tapes in a Florida sandy soil[J]. Pest Manag Sci, 2023, 79(11): 4474-4480. doi: 10.1002/ps.7649
[104] 王泊理, 赵江克. 阿维菌素与噻唑膦混配对南方根结线虫的联合毒力测定[J]. 植物医生, 2019, 32(6): 24-27.WANG B L, ZHAO J K. Combined virulence determination of compounded abamectin and fosthiazate for Meloidogyne incognita[J]. Plant Dr, 2019, 32(6): 24-27.
[105]DI GIOIA F, OZORES-HAMPTON M, HONG J, et al. The effects of anaerobic soil disinfestation on weed and nematode control, fruit yield, and quality of Florida fresh-market tomato[J]. HortScience, 2016, 51(6): 703-711. doi: 10.21273/HORTSCI.51.6.703
[106]HUANG B, WANG Q, GUO M X, et al. The synergistic advantage of combining chloropicrin or dazomet with fosthiazate nematicide to control root-knot nematode in cucumber production[J]. J Integr Agric, 2019, 18(9): 2093-2106. doi: 10.1016/S2095-3119(19)62565-7
[107]HUANG B, LI J, WANG Q, et al. Effect of soil fumigants on degradation of abamectin and their combination synergistic effect to root-knot nematode[J]. PLoS One, 2018, 13(6): e0188245. doi: 10.1371/journal.pone.0188245
[108]CASTILLO G X, OZORES-HAMPTON M, NAVIA GINE P A. Effects of fluensulfone combined with soil fumigation on root-knot nematodes and fruit yield of drip-irrigated fresh-market tomatoes[J]. Crop Prot, 2017, 98: 166-171. doi: 10.1016/j.cropro.2017.03.029
[109]HAJJI-HEDFI L, LARAYEDH A, HAMMAS N C, et al. Biological activities and chemical composition of Pistacia lentiscus in controlling Fusarium wilt and root-knot nematode disease complex on tomato[J]. Eur J Plant Pathol, 2019, 155(1): 281-291. doi: 10.1007/s10658-019-01770-7
[110]KHATRI K, VALLAD G, PERES N, et al. Efficacy of metam potassium on Fusarium oxysporum, Macrophomina phaseolina, Meloidogyne javanica, and seven weed species in microcosm experiments[J]. Pest Manag Sci, 2021, 77(2): 869-876. doi: 10.1002/ps.6091
[111]SHI X G, QIAO K, LI B T, et al. Integrated management of Meloidogyne incognita and Fusarium oxysporum in cucumber by combined application of abamectin and fludioxonil[J]. Crop Prot, 2019, 126: 104922. doi: 10.1016/j.cropro.2019.104922
[112]ABD-ELGAWAD M M M, ASKARY T H. Factors affecting success of biological agents used in controlling the plant-parasitic nematodes[J]. Egypt J Biol Pest Contr, 2020, 30(1): 17. doi: 10.1186/s41938-020-00215-2
[113]D'ERRICO G, MARRA R, CRESCENZI A, et al. Integrated management strategies of Meloidogyne incognita and Pseudopyrenochaeta lycopersici on tomato using a Bacillus firmus-based product and two synthetic nematicides in two consecutive crop cycles in greenhouse[J]. Crop Prot, 2019, 122: 159-164. doi: 10.1016/j.cropro.2019.05.004
[114]DAHLIN P, EDER R, CONSOLI E, et al. Integrated control of Meloidogyne incognita in tomatoes using fluopyram and Purpureocillium lilacinum strain 251[J]. Crop Prot, 2019, 124: 104874. doi: 10.1016/j.cropro.2019.104874
[115]TZORTZAKAKIS E A, NASIOU E, CHATZAKI A, et al. Compatibility of fluazaindolizine with Pasteuria penetrans on spore attachment and infection of three Meloidogyne species[J]. J Plant Dis Prot, 2023, 130(4): 817-822. doi: 10.1007/s41348-023-00754-4
[116]FORGHANI F, HAJIHASSANI A. Recent advances in the development of environmentally benign treatments to control root-knot nematodes[J]. Front Plant Sci, 2020, 11: 1125. doi: 10.3389/fpls.2020.01125
[117]DESAEGER J, WRAM C, ZASADA I. New reduced-risk agricultural nematicides-rationale and review[J]. J Nematol, 2020, 52: e2020-e2091.
[118]FARUK I. Efficacy of organic soil amendments and a nematicide for management of root-knot nematode Meloidogyne spp. of onion[J]. Am J Biosci Bioeng, 2019, 7(4): 57.
[119]PEIRIS P U S, LI Y J, BROWN P, et al. Efficacy of organic amendments to control Meloidogyne spp. in crops: a systematic review and meta-analysis[J]. J Soils Sediments, 2020, 20(3): 1584-1598. doi: 10.1007/s11368-019-02498-x
[120]MORRIS K A, LI X, LANGSTON D B, et al. Fluensulfone sorption and mobility as affected by soil type[J]. Pest Manag Sci, 2018, 74(2): 430-437. doi: 10.1002/ps.4724
[121]OKA Y, SHUKER S, TKACHI N. Influence of soil environments on nematicidal activity of fluensulfone against Meloidogyne javanica[J]. Pest Manag Sci, 2013, 69(11): 1225-1234. doi: 10.1002/ps.3487
相关知识
温室黄瓜根结线虫病非化学防治技术研究初报
蔬菜根结线虫病早预防
花卉根结线虫病的防治(21页)
农业种植根结线虫病:症状辨识与综合防治策略,守护作物根基健康 —【发财农业网】
三种园林植物根结线虫病病原鉴定
山茶花的致命病害——根结线虫病
根结线虫特效药,根结线虫病哪些药,大棚根结线虫病有什么特效药
中药材根结线虫病够治好吗,五味子根结线虫病怎样处理,线翘翘专注根结线虫病
柑橘根结线虫病用什么药效果好,西瓜根结线虫病药,线翘翘专注根结线虫病
根结线虫病用什么药灌根,治疗根结线虫病用什么药 ,根结线虫病有什么特效药54968
网址: 作物根结线虫病化学防治研究进展 https://m.huajiangbk.com/newsview1457788.html
上一篇: SN |
下一篇: 根结线虫,化学药剂越来越难防,还 |