摘要:
目的 明确冀中南种植黄瓜设施土壤盐分、酸碱性和养分状况,为提高土壤质量及农业绿色发展提供依据。
方法 于2015年在冀中南地区6个黄瓜设施栽培主产区以20 cm土层厚度、分5层采集1 m土层的设施内及其相邻或附近露地粮田土壤样品(分别称为设施土壤和粮田土壤),测定盐分、酸碱性及养分含量,分析该区域设施土壤理化性质及养分变化状况。
结果 (1)与粮田土壤相比,冀中南设施表层(0 ~ 20 cm)土壤盐分、有机质、硝态氮、速效磷、速效钾均显著增加,其平均含量分别为粮田土壤的1.78倍、1.43倍、2.56倍、7.59倍、2.56倍;土壤pH显著降低,平均降幅为0.54个单位。(2)不同采样点间设施土壤(0 ~ 20 cm)盐分、酸碱性、养分状况存在较大的差异,土壤电导率变化范围为271.6 ~ 631.6 µS cm−1 ,土壤pH变化范围为7.20 ~ 7.93,土壤有机质、硝态氮、速效磷、速效钾变化范围分别为16.2 ~ 36.4 g kg−1 、52.9 ~ 205.9 mg kg−1、107.5 ~ 315.6 mg kg−1、188.9 ~ 757.9 mg kg−1。(3)设施土壤0 ~ 100 cm土层硝态氮和速效磷含量均高于同层粮田土壤,每层增幅分别为77.9%、69.2%、38.6%、25.1%、73.6%和161.3%、261.85%、224.7%、135.3%、120.4%,除40 ~ 60 cm与60 ~ 80 cm土层土壤硝态氮差异不显著外,其余均显著高于粮田土壤。
结论 与粮田土壤相比,冀中南种植黄瓜的设施土壤盐分积累严重、pH显著下降,养分含量显著提高、但不同养分间比例不平衡;需提高土壤有机质含量、总量控制养分投入量和不同养分间比例,以防治土壤次生盐渍化和pH下降趋势,进而提高土壤质量,为蔬菜高产稳产和设施农业绿色发展提供技术支撑。
关键词: 设施黄瓜 / 土壤质量 / 盐分 / 酸碱性 / 养分Abstract:
Objective Clarifying the soil salinity, acidity, alkalinity and nutrients of the greenhouse cucumber will provide an effective basis for improving soil quality and green development of the greenhouse cucumber in central and southern Hebei Province.
Method six main production areas of facility in central and Southern Hebe were selected as the research object in 2015, the soil samples with 1 m soil layer in cucumber-planted greenhouse and its adjacent or nearby open grain-planted field were collected in 5 layers with a thickness of 20 cm. These soil samples were used to determine the salinity, acid-base and nutrient status and analyze the physical and chemical properties and nutrient changes in this area.
Result The results showed that: (1) Compared with the grain-planted soil, the surface soil (0-20 cm) salt, organic matter, nitrate nitrogen, available phosphorus and available potassium in cucumber-planted greenhouse in central and southern Hebei were significantly increased, and the average contents were 1.78, 1.43, 2.56, 7.59 and 2.56 times of the grain-planted soil, respectively. Soil pH decreased significantly by 0.54 units. (2) There were great differences in soil salinity, acidity, alkalinity and nutrients in cucumber-planted greenhouse in different sampling sites. The soil electrical conductivity ranged from 271.57 to 631.6 μS cm−1, and the soil pH ranged from 7.20 to 7.93. Soil organic matter, nitrate nitrogen, available phosphorus and available potassium ranged from 16.2 to 36.4 g kg−1, 52.9 to 205.9 mg kg−1, 107.5 to 315.6 mg kg−1 and 188.9 to 757.9 mg kg−1, respectively. (3) The contents of nitrate nitrogen and available phosphorus in different 0-100 cm soil layers in cucumber-planted greenhouse were higher than those in grain-planted soil. In 0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm, 80-100 cm soil layers, the increase rates of nitrate nitrogen and available phosphorus were 77.9%, 69.2%, 38.6%, 25.1%, 73.6% and 161.3%, 261.85%, 224.7%, 135.3%, 120.4% respectively. Except that the nitrate nitrogen in 40-60 cm and 60-80 cm soil layers was not significant, the others were significantly higher than that in grain field soil.
Conclusion Comparison between the cucumber-planted greenhouse and grain-planted soil in central and Southern Hebei Province,the soil salt content increased seriously and pH decreased significantly, and the soil nutrient content was significantly improved, but the proportion of different nutrients was not balanced. In order to provide technical support for high and stable yield and green development of vegetables, it is necessary to increase soil organic matter, to control nutrient input and the proportion of different nutrients, to prevent soil secondary salinization and to alleviate the downward trend of pH, and to improve soil quality.
图 1 种植黄瓜设施土壤EC状况及其样本分布特征
该图数据来源于全部调研表层(0 ~ 20 cm)土壤,即177个设施土壤样品,55个粮田土壤样品。图(a)盒子内的实线和虚线、盒子下边和上边缘线、盒子外的棒分别代表数据的中位数和平均数、25%和75%分位数、5%和 95%分位数;实心黑点代表小于5%和大于95%分位数的数据;小写字母表示处理间差异在P < 0.05 水平显著。下同。
Figure 1. The condition and distribution characteristic of soil electrical conductivity in cucumber-planted greenhouse
图 2 种植黄瓜设施土壤pH及其样本分布特征
Figure 2. The value and distribution characteristic of soil pH in cucumber-planted greenhouse
图 3 种植黄瓜设施土壤有机质含量水平及其样本分布特征
Figure 3. The content and distribution characteristic of soil organic matter in cucumber-planted greenhouse
图 4 种植黄瓜设施土壤硝态氮含量水平及其样本分布特征
Figure 4. The content and distribution characteristic of soil nitrate nitrogen in cucumber-planted greenhouse
图 5 种植黄瓜设施土壤速效磷含量水平及其样本分布特征
Figure 5. The content and distribution characteristic of soil available P in cucumber-planted greenhouse
图 6 种植黄瓜设施土壤速效磷含量水平及其样本分布特征
Figure 6. The content and distribution characteristic of soil available potassium in cucumber-planted greenhouse
图 7 种植黄瓜设施土壤种植粮食土壤0 ~ 100 cm不同土层硝态氮、速效磷含量
该图数据来源于全部调研土壤样品。柱上不同小写字母表示设施土壤与粮田土壤同一土层间差异在P < 0.05水平显著;不同大写字母表示设施土壤不同土层间差异在P < 0.05水平显著。
Figure 7. Contents of nitrate nitrogen and available phosphorus in different soil layers of 0-100 cm in cucumber-planted greenhouse and grain-planted field
表 1 菜田土壤盐分分级标准
Table 1 Classification standard of soil salinization in vegetable field
电导率(μS cm−1)表 2 菜田土壤酸碱性分级标准
Table 2 Classification standard of soil pH in vegetable field
pH< 5.55.5 ~ 6.56.5 ~ 7.57.5 ~ 8.0≥ 8.0 等级强酸性弱酸性中性弱碱性碱性表 3 菜田土壤养分含量分级标准
Table 3 Classification standard of soil nutrient contents in vegetable field
项目表 4 不同区域种植黄瓜设施土壤(0 ~ 20 cm)EC、pH和养分含量的均值
Table 4 Regional differences of soil salinity, pH and nutrients in cucumber-planted greenhouse
项目Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008 − 1010. doi: 10.1126/science.1182570
[18] 陈碧华, 杨和连, 李亚灵, 等. 不同种植年限大棚菜田土壤水溶性盐分的变化特征[J]. 水土保持学报, 2012, 26(1): 241 − 245. [19]Wang Z H, Li S X. Effects of N forms and rates on vegetable growth and nitrate accumulation[J]. Pedosphere, 2003, 13(4): 309 − 316.
[20] 陈伦寿, 陆景陵. 蔬菜营养与施肥[M]. 北京: 中国农业出版社, 2002. [21] 邱孝煊, 黄东风, 蔡顺香, 等. 施肥对蔬菜硝酸盐累积的影响研究[J]. 中国生态农业学报, 2004, (2): 116 − 119. [22] 黄绍文, 唐继伟, 李春花, 等. 我国蔬菜化肥减施潜力与科学施用对策[J]. 植物营养与肥料学报, 2017, 23(6): 1480 − 1493. doi: 10.11674/zwyf.17366 [23] 曾招兵, 李盟军, 姚建武, 等. 习惯施肥对菜地氮磷径流流失的影响[J]. 水土保持学报, 2012, 26(5): 34 − 38 + 43. [24] 伊 田, 梁东丽, 王松山, 等. 不同种植年限对设施栽培土壤养分累积及其环境的影响[J]. 西北农林科技大学学报(自然科学版), 2010, 38(7): 111 − 117. [25]Zhang Y C, Li R N, Wang L Y, et al. Threshold of soil olsen-P in greenhouses for tomatoes and cucumbers[J]. Communications in Soil Science & Plant Analysis, 2010, 41(20): 2383 − 2402.
[26] 余海英, 李廷轩, 张锡洲. 温室栽培系统的养分平衡及土壤养分变化特征[J]. 中国农业科学, 2010, 43(3): 514 − 522. doi: 10.3864/j.issn.0578-1752.2010.03.010 [27] 林治安, 赵秉强, 袁 亮, 等. 长期定位施肥对土壤养分与作物产量的影响[J]. 中国农业科学, 2009, 42(8): 2809 − 2819. doi: 10.3864/j.issn.0578-1752.2009.08.021 [28] 张国荣, 李菊梅, 徐明岗, 等. 长期不同施肥对水稻产量及土壤肥力的影响[J]. 中国农业科学, 2009, 42(2): 543 − 551. doi: 10.3864/j.issn.0578-1752.2009.02.020 [29] 林 葆, 林继雄, 李家康. 长期施肥的作物产量和土壤肥力变化[J]. 植物营养与肥料学报, 1994, (1): 6 − 18. doi: 10.3321/j.issn:1008-505X.1994.01.002 [30] 黄东风, 王 果, 李卫华, 等. 不同施肥模式对蔬菜生长、氮肥利用及菜地氮流失的影响[J]. 应用生态学报, 2009, 20(3): 631 − 638. [31]Yang L, Huang B, Mao M, et al. Sustainability assessment of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China[J]. Environmental Science & Pollution Research International, 2016, 23(17): 17287 − 17297.
[32] 徐 强, 程智慧, 孟焕文, 等. 玉米-线辣椒套作系统中土壤养分与根际土壤微生物、酶活性的关系[J]. 应用生态学报, 2007, (12): 2747 − 2754. [33] 刘素慧, 刘世琦, 张自坤, 等. 大蒜连作对其根际土壤微生物和酶活性的影响[J]. 中国农业科学, 2010, 43(5): 1000 − 1006. doi: 10.3864/j.issn.0578-1752.2010.05.015 [34] 施毅超, 胡正义, 龙为国, 等. 轮作对设施蔬菜大棚中次生盐渍化土壤盐分离子累积的影响[J]. 中国生态农业学报, 2011, 19(3): 548 − 553. [35] 吴凤芝, 赵凤艳, 刘元英. 设施蔬菜连作障碍原因综合分析与防治措施[J]. 东北农业大学学报, 2000, (3): 241 − 247. doi: 10.3969/j.issn.1005-9369.2000.03.007 [36] 李 杰, 姬景红, 李玉影, 等. 不同改良措施对保护地土壤盐分积累及离子组成的影响[J]. 北方园艺, 2012, (7): 159 − 164.相关知识
淮北地区土壤养分状况分析及种植结构调整
如何改变土壤的酸碱性?
如何改良土壤的酸碱性?
土壤酸碱性与土壤肥力及植物生长.PPT
微生物菌肥可改善土壤酸碱性
有机肥对茶园土壤酸碱性的影响
植物病虫害与土壤酸碱性的关系
不同花卉土壤的酸碱性(花的颜色与土壤酸碱性)
花卉栽培土壤酸碱性
广安区柑橘土壤养分状况及综合肥力评价
网址: 冀中南种植黄瓜设施土壤盐分、酸碱性和养分状况分析 https://m.huajiangbk.com/newsview1485203.html
上一篇: 大棚土壤盐害对黄瓜栽培的影响及防 |
下一篇: 黄瓜喜水吗?详解黄瓜的生长环境( |