import pandas as pd
import matplotlib.pyplot as plt
df = pd.DataFrame([8,8,1,2], index=['a', 'b', 'c', 'd'], columns=['x'])
df.plot(kind='pie', subplots=True, figsize=(8, 8))
plt.show()
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
X = np.arange(0, 10, 1)
Y = X + 5 * np.random.random((5, X.size))
baseline = ["zero", "sym", "wiggle", "weighted_wiggle"]
for n, v in enumerate(baseline):
if n<3 :
plt.tick_params(labelbottom='off')
plt.subplot(2 ,2, n + 1)
plt.stackplot(X, *Y, baseline=v)
plt.title(v)
plt.tight_layout()
import matplotlib.pyplot as plt
height = [3, 12, 5, 18, 45]
bars = ('A', 'B', 'C', 'D', 'E')
x_pos = [0,1,5,8,9]
plt.bar(x_pos, height)
plt.xticks(x_pos, bars)
plt.show()
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
df=pd.DataFrame({
'x_values': range(1,101), 'y_values': np.random.randn(100)*15+range(1,101) })
plt.plot( 'x_values', 'y_values', data=df, linestyle='none', marker='o')
plt.show()
import matplotlib.pyplot as plt
import numpy as np
x = np.random.rand(40)
y = np.random.rand(40)
z = np.random.rand(40)
plt.scatter(x, y, s=z*1000, alpha=0.5)
plt.show()
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_style("whitegrid")
blue, = sns.color_palette("muted", 1)
x = np.arange(23)
y = np.random.randint(8, 20, 23)
fig, ax = plt.subplots()
ax.plot(x, y, color=blue, lw=3)
ax.fill_between(x, 0, y, alpha=.3)
ax.set(xlim=(0, len(x) - 1), ylim=(0, None), xticks=x)
plt.show()
import matplotlib.pyplot as plt
import numpy as np
x = np.random.normal(size=50000)
y = x * 3 + np.random.normal(size=50000)
plt.hist2d(x, y, bins=(50, 50), cmap=plt.cm.Reds)
plt.title("A 2D histogram")
plt.show()
import matplotlib.pyplot as plt
size_of_groups=[12,11,3,30]
plt.pie(size_of_groups)
my_circle=plt.Circle( (0,0), 0.7, color='white')
p=plt.gcf()
p.gca().add_artist(my_circle)
plt.show()
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
x = np.linspace(0, 2*np.pi, 100)
y = np.sin(x) + np.random.uniform(size=len(x)) - 0.2
my_color = np.where(y>=0, 'orange', 'skyblue')
plt.vlines(x=x, ymin=0, ymax=y, color=my_color, alpha=0.4)
plt.scatter(x, y, color=my_color, s=1, alpha=1)
plt.title("Evolution of the value of ...", loc='left')
plt.xlabel('Value of the variable')
plt.ylabel('Group')
plt.show(
import numpy as np
import matplotlib.pyplot as plt
x=range(1,6)
y=[ [1,4,6,8,9], [2,2,7,10,12], [2,8,5,10,6] ]
plt.stackplot(x,y, labels=['A','B','C'])
plt.legend(loc='upper left')
plt.show()
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
x = range(1,6)
y = [ [10,4,6,5,3], [12,2,7,10,1], [8,18,5,7,6] ]
pal = sns.color_palette("Set1")
plt.stackplot(x,y, labels=['A','B','C'], colors=pal, alpha=0.4 )
plt.legend(loc='upper right')
pal = ["#9b59b6", "#e74c3c", "#34495e", "#2ecc71"]
plt.stackplot(x,y, labels=['A','B','C'], colors=pal, al
相关知识
Python(派森)
基于Python的全国主要城市天气数据可视化大屏系统
如何在Python中使用Pandas库进行季节性调整?
如何python花一朵玫瑰花
如何用python画花
这7个免费的python项目,帮助新手学透python基本功
python之数据分析Matplotlib
python 怎么加载鸢尾花数据
SKYNE/python
五大数据分析软件对比:Python、Excel、R、SPSS、SAS
网址: python做图表的模块有哪些,python如何制作图表 https://m.huajiangbk.com/newsview1545135.html
上一篇: android图片花,Andro |
下一篇: 职业技术学院开展第一期“夯实基础 |