首页 > 分享 > 庐山日本柳杉径向生长对气候响应的边际效应

庐山日本柳杉径向生长对气候响应的边际效应

摘要:

目的  深入认知树轮−气候要素之间的关系,揭示树木径向生长的主要限制性因素的相对贡献率及边际效应,以提升树轮在树轮生态学、树轮气候学研究中的应用价值。

方法  基于庐山地区日本柳杉树轮宽度资料和庐山气象站气象资料,采用树轮气候学方法研制树轮宽度年表,基于相关分析方法初步识别树木径向生长的主要限制性因素,进而利用增强回归树分析方法揭示了庐山日本柳杉径向生长的主要影响因素相对贡献及边际效应。

结果  正向影响庐山日本柳杉径向生长的因素按重要程度从大到小依次为当年1—3月平均最低气温(20.66%)、上年2—11月相对湿度(15.4%)、当年2—3月平均水汽压(9.47%),负向影响庐山日本柳杉径向生长的因素按重要程度从大到小依次为上年11月日照时数(20.81%)、上年5月最大日降水量(20.54%)、当年7月平均气温(13.11%);树轮−气候之间的关系在阈值范围之内具有较好的线性关系,阈值范围外则不具有线性关系。

结论  庐山日本柳杉径向生长受多种气候要素的综合影响,任一要素的影响均不是简单的线性关系,均存在明显的阈值效应。在分析树木径向生长对气候要素响应及进行树轮气候重建时,对边际效应问题应予以重视,以增强树轮−气候间关系的可信度及气候重建的可靠性。

Abstract:

Objective  This paper aims to further understand the relationship between tree radial growth and climatic factors, reveal the relative importance as well as marginal effect of main driving climatic factors of tree radial growth, so as to enhance the application value of tree ring in the research of dendroecology and dendroclimatology.

Method  Based on the tree ring width data of Cryptomeria japonica in Lushan Mountain area and the meteorological data of Lushan Mountain meteorological station, the tree ring width chronology was developed by the dendroclimatology method. The main driving climatic factors of tree radial growth were initially identified based on the correlation analysis method, and then the relative importance and marginal effect of the main influencing factors on Cryptomeria japonica radial growth were revealed by utilizing boosted regression tree (BRT) method.

Result  The research results showed that the climatic factors that positively affected the radial growth of Cryptomeria japonica in Lushan Mountain, in descending order of importance, were the average minimum temperature from January to March of the current year (20.66%), the relative humidity from February to November of the previous year (15.4%), and the average vapor pressure from February to March of the current year (9.47%); the climatic factors that negatively affected the radial growth of Cryptomeria japonica in Lushan Mountain, in descending order of importance, were the sunshine hours in November of the previous year (20.81%), the maximum daily precipitation in the May of the previous year (20.54%) and the average temperature in July of the current year (13.11%). The relationship between tree ring and climate had a good linear relationship within the threshold range, and there was no linear relationship outside the threshold range.

Conclusion  The radial growth of Cryptomeria japonica in Lushan Mountain is affected by many climatic factors, and the influence of each factor has obvious marginal effect. It is important to pay close attention to the problem of marginal effects when performing tree ring based climate reconstruction, which will enhance the reliability of tree ring climate relationship and climate reconstruction.

图  1   采样点位置图

Figure  1.   Location of sampling sites

图  2   年表及样本量

Figure  2.   Chronologies and sample size

图  3   差值年表与气候要素相关关系

TMINC1-C3为 当年1—3月平均最低气温;TEMC7为当年7月平均气温;SUNP11为上年11月日照时数;WVPC2-C3为当年2—3月平均水汽压;RHP2-P11为上年2—11月相对湿度;PREP5为上年5月最大日降水量。下同。TMINC1-C3, average minimum temperature from January to March of the current year; TEMC7, average temperature in July of the current year; SUNP11, sunshine hours in November of the previous year; WVPC2-C3, average water vapor pressure from February to March of the current year; RHP2-P11, relative humidity from February to November of the previous year; PREP5, maximum daily precipitation in May of the previous year. The same below.

Figure  3.   Relationship between difference chronology and climate factors

图  4   各气候变量相对重要性

Figure  4.   Relative importance of climate variables

图  5   边际效应结果

Figure  5.   Results of marginal effect

表  1   年表统计特征及公共区间分析结果

Table  1   Descriptive statistics of tree ring width chronology and the results of common interval analysis

年表统计量
Chronological statistics (1932—2018)公共区间统计量
Common interval statistics (1950—2016)平均敏感度
Mean
sensitivity标准差
Standard
deviation一阶自相关系数
First-order
autocorrelation
coefficient平均相关系数
Mean
correlation
coefficient树内相关系数
Within-tree
correlation
coefficient树间相关系数
Between-trees
correlation
coefficient
信噪比
Signal-to-noise
ratio样本总体代表性
Total
representativeness
of sample第1主成分
解释方差量
Variance explained
by the first
principal component 0.1330.1750.4740.3630.5570.35924.460.96139.3% [1]

Zhang T, Liu Y, Zhang R, et al. Tree-ring width based streamflow reconstruction for the Kaidu River originating from the central Tianshan Mountains since A. D. 1700[J]. Dendrochronologia, 2020, 61: 1−13.

[2]

Chen Y, Gagen M H, Chen F, et al. Precipitation variations recorded in tree rings from the upper Salween and Brahmaputra River valleys, China[J]. Ecological Indicators, 2020, 113: 1−10.

[3] 蔡秋芳, 刘禹. 湖北麻城马尾松树轮宽度对气候的响应及1879年以来6—9月平均最高气温重建[J]. 科学通报, 2013, 58(增刊 I):169−177.

Cai Q F, Liu Y. The June–September maximum mean temperature reconstruction from Masson pine (Pinus massoniana Lamb.) tree rings in Macheng, southeast China since 1879 AD[J]. Chinese Science Bulletin (Chinese Version), 2013, 58(Suppl. I): 169−177.

[4]

Tei S, Sugimoto A, Yonenobu H, et al. Growth and physiological responses of larch trees to climate changes deduced from tree-ring widths and δ13C at two forest sites in eastern Siberia[J]. Polar Science, 2014, 8(2): 183−195.

[5]

Bhuyan U, Zang C, Menzel A. Different responses of multispecies tree ring growth to various drought indices across Europe[J]. Dendrochronologia, 2017, 44: 1−8.

[6] 张辰华, 李书恒, 白红英, 等. 太白山地区7月NDVI多尺度周期变化及其对气候因子的响应[J]. 资源科学, 2019, 41(11):2131−2143. doi: 10.18402/resci.2019.11.15

Zhang C H, Li S H, Bai H Y, et al. Multi-scale periodic variation of NDVI in July and its response to climatic factors in the Taibai Mountain area[J]. Resources Science, 2019, 41(11): 2131−2143. doi: 10.18402/resci.2019.11.15

[7]

Briffa K R, Jones P D, Schweingruber F H, et al. Unusual 20th-century summer warmth in a 1 000-year temperature record from Siberia[J]. Nature, 1995, 376: 156−159.

[8]

Savva Y, Oleksyn J, Reich P B, et al. Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland[J]. Trees-Structure and Function, 2006, 20(6): 735−746.

[9] 白天军, 刘苑秋, 温林生, 等. 庐山日本柳杉早材与晚材年轮宽度对气候变化的响应[J]. 北京林业大学学报, 2020, 42(9):61−69. doi: 10.12171/j.1000-1522.20190439

Bai T J, Liu Y Q, Wen L S, et al. Response of earlywood and latewood ring width of Cryptomeria japonica to climate change in Lushan Mountain, eastern China[J]. Journal of Beijing Forestry University, 2020, 42(9): 61−69. doi: 10.12171/j.1000-1522.20190439

[10]

Ridgeway G. Generalized boosted models: a guide to the GBM package[J]. Compute, 2005, 1: 1−12.

[11]

Lewin W C, Mehner T, Ritterbusch D, et al. The influence of anthropogenic shoreline changes on the littoral abundance of fish species in German lowland lakes varying in depth as determined by boosted regression trees[J]. Hydrobiologia, 2014, 724(1): 293−306.

[12] 焦琳琳, 常禹, 申丹, 等. 利用增强回归树分析中国野火空间分布格局的影响因素[J]. 生态学杂志, 2015, 34(8):2288−2296.

Jiao L L, Chang Y, Shen D, et al. Using boosted regression trees to analyze the factors affecting the spatial distribution pattern of wildfire in China[J]. Chinese Journal of Ecology, 2015, 34(8): 2288−2296.

[13] 葛跃, 王明新, 孙向武, 等. 基于增强回归树的城市PM2.5日均值变化分析: 以常州为例[J]. 环境科学, 2017, 38(2):485−494.

Ge Y, Wang M X, Sun X W, et al. Variation analysis of daily PM2.5 concentrations based on boosted regression tree: a case study in Changzhou[J]. Environmental Science, 2017, 38(2): 485−494.

[14]

Gu H L, Wang J, Ma L J, et al. Insights into the BRT (boosted regression trees) method in the study of the climate-growth relationship of Masson pine in subtropical China[J]. Forests, 2019, 10(3): 1−20.

[15]

Cook E R, Kairiukstis L A K. Methods of dendrochronology[M]. Dordrecht: Kluwer Academic Publishers, 1990.

[16] 曹仁杰, 尹定财, 田昆, 等. 丽江老君山海拔上限长苞冷杉(Abies georgei)和云南铁杉(Tsuga dumosa)径向生长对气候变化的响应[J]. 生态学报, 2020, 40(17):6067−6076.

Cao R J, Yin D C, Tian K, et al. Response of radial growth of Abies georgei and Tsuga dumosa to climate change at upper distributional limits on Laojun Mountain, Lijiang, Yunnan, China[J]. Acta Ecologica Sinica, 2020, 40(17): 6067−6076.

[17] 郑壮鹏, 赵思媛, 周非飞, 等. 亚洲树轮平均敏感度分布特征及其影响因素[J]. 应用生态学报, 2019, 30(3):805−813.

Zheng Z P, Zhao S Y, Zhou F F, et al. Variations of mean sensitivity of tree rings in Asia and their influencing factors[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 805−813.

[18] 乔晶晶, 王童, 潘磊, 等. 不同海拔和坡向马尾松树轮宽度对气候变化的响应[J]. 应用生态学报, 2019, 30(7):2231−2240.

Qiao J J, Wang T, Pan L, et al. Responses of radial growth to climate change in Pinus massoniana at different altitudes and slopes[J]. Chinese Journal of Applied Ecology, 2019, 30(7): 2231−2240.

[19] 阮超越, 董志鹏, 李颖俊, 等. 闽北地区柳杉树轮宽度变化对气候因子的响应[J]. 亚热带资源与环境学报, 2020, 15(1):11−18. doi: 10.3969/j.issn.1673-7105.2020.01.003

Ruan C Y, Dong Z P, Li Y J, et al. Responses of tree-ring width of Cryptomeria to climate factors in northern Fujian[J]. Journal of Subtropical Resources and Environment, 2020, 15(1): 11−18. doi: 10.3969/j.issn.1673-7105.2020.01.003

[20] 王童, 孙玉军, 乔晶晶. 将乐林场马尾松树轮宽度对气候变化的响应[J]. 北京林业大学学报, 2019, 41(9):30−39.

Wang T, Sun Y J, Qiao J J. Response of Pinus massoniana tree-ring width in the Jiangle Area of Fujian Province to climate change[J]. Journal of Beijing Forestry University, 2019, 41(9): 30−39.

[21] 陈秋艳, 勾晓华, 张军周, 等. 树轮宽度指示的神农架地区过去172年的冬春季温度变化[J]. 第四纪研究, 2015, 35(5):1145−1154. doi: 10.11928/j.issn.1001-7410.2015.05.10

Chen Q Y, Gou X H, Zhang J Z, et al. Tree-ring indication of winter-spring temperature in Shennongjia Mountain area of central china over the past 172 years[J]. Quaternary Sciences, 2015, 35(5): 1145−1154. doi: 10.11928/j.issn.1001-7410.2015.05.10

[22] 李宗善, 刘国华, 傅伯杰, 等. 川西卧龙国家级自然保护区树木生长对气候响应的时间稳定性评估[J]. 植物生态学报, 2010, 34(9):1045−1057. doi: 10.3773/j.issn.1005-264x.2010.09.005

Li Z S, Liu G H, Fu B J, et al. Evaluation of temporal stability in tree growth-climate response in Wolong National Natural Reserve, western Sichuan, China[J]. Chinese Journal of Plant Ecology, 2010, 34(9): 1045−1057. doi: 10.3773/j.issn.1005-264x.2010.09.005

[23] 钱恒君, 蔡秋芳, 刘禹. 湖南慈利马尾松树轮宽度对气候的响应及1854年以来冬季极端低温重建[J]. 地球环境学报, 2019, 10(6):543−555.

Qian H J, Cai Q F, Liu Y. Response of tree-ring width of Pinus massoniana to climate change and winter extreme minimum temperature reconstruction since 1854 in Cili, Hunan Province of subtropical China[J]. Journal of Earth Environment, 2019, 10(6): 543−555.

[24] 尚华明, 尹仔锋, 魏文寿, 等. 基于树木年轮宽度重建塔里木盆地西北缘水汽压变化[J]. 中国沙漠, 2015, 35(5):1283−1290. doi: 10.7522/j.issn.1000-694X.2014.00116

Shang H M, Yin Z F, Wei W S, et al. Tree-ring based water vapor pressure reconstruction in northwestern edge of the Tarim Basin[J]. Journal of Desert Research, 2015, 35(5): 1283−1290. doi: 10.7522/j.issn.1000-694X.2014.00116

[25] 赵伯阳, 刘禹, 宋慧明, 等. 基于油松树轮宽度重建河北青龙过去123年平均相对湿度[J]. 地球环境学报, 2016, 7(5):509−520. doi: 10.7515/JEE201605008

Zhao B Y, Liu Y, Song H M, et al. Mean relative humidity reconstruction based on the tree-ring width from Chinese pines since 1890 from the Qinglong region, China[J]. Journal of Earth Environment, 2016, 7(5): 509−520. doi: 10.7515/JEE201605008

[26] 黄小梅, 肖丁木, 秦宁生. 利用树木年轮重建公元1639−2013年青南高原5—9月相对湿度变化[J]. 干旱区地理, 2018, 41(5):1002−1008.

Huang X M, Xiao D M, Qin N S. Tree-ring based reconstruction of relative humidity from May to September in southern Qinghai Plateau during AD 1639−2013[J]. Arid Land Geography, 2018, 41(5): 1002−1008.

[27] 王亚军, 张永, 邵雪梅. 河北太行山南段树木年轮指示的167年来相对湿度变化研究[J]. 生态学报, 2019, 39(12):4570−4578.

Wang Y J, Zhang Y, Shao X M. The study of variation in relative humidity from May to July during the past 167 years in the southern Taihang Mountains in Hebei Province[J]. Acta Ecologica Sinica, 2019, 39(12): 4570−4578.

[28]

Sun C, Liu Y, Song H, et al. Sunshine duration reconstruction in the southeastern Tibetan Plateau based on tree-ring width and its relationship to volcanic eruptions[J]. Science of the Total Environment, 2018, 628−629: 707−714.

[29] 郑广宇, 王文杰, 王晓春, 等. 帽儿山地区兴安落叶松人工林树木年轮气候学研究[J]. 植物研究, 2012, 32(2):191−197. doi: 10.7525/j.issn.1673-5102.2012.02.011

Zheng G Y, Wang W J, Wang X C, et al. Tree-ring climatology of Larix gmelinii in Maoershan Region, Northeastern China[J]. Bulletin of Botanical Research, 2012, 32(2): 191−197. doi: 10.7525/j.issn.1673-5102.2012.02.011

[30] 蒋延玲, 周广胜, 王玉辉, 等. 内蒙古地带性针茅植物对CO2和气候变化的适应性研究进展[J]. 生态学报, 2015, 35(14):4559−4569.

Jiang Y L, Zhou G S, Wang Y H, et al. Advances in the adaptability of zonal Stipa plants to CO2 and climate change in Inner Mongolia[J]. Acta Ecologica Sinica, 2015, 35(14): 4559−4569.

[31] 曹春福, 周非飞, 董志鹏, 等. 福建戴云山台湾松树轮−气候响应的线性和非线性模式研究[J]. 亚热带资源与环境学报, 2016, 11(1):44−51. doi: 10.3969/j.issn.1673-7105.2016.01.007

Cao C F, Zhou F F, Dong Z P, et al. Study on nonlinear climate-growth patterns of Pinus taiwanens in Daiyun Mountain, Fujian Province[J]. Journal of Subtropical Resources and Environment, 2016, 11(1): 44−51. doi: 10.3969/j.issn.1673-7105.2016.01.007

相关知识

庐山日本柳杉径向生长对气候响应的边际效应
祁连山东部不同树龄油松径向生长对气候的响应
利用日本柳杉幼苗不同器官诱导不定芽产生新植株
长白山阔叶红松林主要树种种群结构及其林木径向生长对气候响应
黔中地区马尾松径向生长对气候变化的响应
我国高纬度、高海拔树木径向生长对气候变化的响应及其影响机制
不同径级红松径向生长对气候变化的响应
日本柳杉与柳杉的区别
祁连山东段两个优势针叶树种径向生长过程及对气候变化响应研究
长白山阔叶红松林主要树种径向生长对气候变化响应及温度重建

网址: 庐山日本柳杉径向生长对气候响应的边际效应 https://m.huajiangbk.com/newsview1650076.html

所属分类:花卉
上一篇: 施生石灰和三盐营养液对柳杉幼苗生
下一篇: 第四章园林植物与城市物质环境