摘要:
通过在江苏各地2015-2018年7-8月间的调查走访获得57位养殖者关于中华绒螯蟹(Eriocheir sinensis)养殖池塘的换水信息,将调查期间养殖者作出换水决策的首要目的分为补偿蒸发(无排水)、防止缺氧、日常管理、病害防控和改善水质5类,占比分别为47%、16%、11%、11%和16%。发现19%的养殖者换水作业(有排水)与水质状态无关。当换水目的是防止缺氧和改善水质时换水频率(FWE)显著高于其他3种情况(P < 0.05),而FWE与增氧机使用强度呈负相关关系(r=-0.177,P < 0.1)。在苏州市和盐城市通过实地监测获得64个常规鱼类养殖池塘111个水质监测数据,结果显示平均ρ(DO)、pH值、ρ(TN)、ρ(NH4+-N)、ρ(TP)、ρ(PO43--P)、CODMn和ρ(叶绿素a)分别为(8.3±2.7)mg·L-1、8.1±0.5、(4.3±2.2)mg·L-1、(1.0±1.0)mg·L-1、(0.56±0.56)mg·L-1、(0.29±0.37)mg·L-1、(12±5)mg·L-1和(133±12)μg·L-1,平均FWE为(0.87±2.10)次·月-1,不同池塘间水质及FWE差异较大。FWE与ρ(DO)、pH值呈显著负相关(P < 0.01),与水温、ρ(NH4+-N)、ρ(TP)和ρ(PO43--P)呈显著正相关(P < 0.01)。上述结果表明换水目的和水质状态都影响FWE,加强人工增氧可降低FWE。
关键词: 换水频率 / 水质 / 池塘养殖 / 中华绒螯蟹 / 鱼Abstract:
The effect of water exchange purpose and water quality status on frequency of water exchange (FWE) in pond aquaculture was investigated. Through the interview investigation processed in Jiangsu Province between July and August from 2015 to 2018, the information of water exchange came from 57 farmers raising Chinese mitten crab (Eriocheir sinensis) was collected. The five types of primary purpose that drive farmers to make water exchange during that season were:compensating the evaporation (without drainage), avoiding hypoxia, routine farming management, preventing disease and improving water quality, which accounted for 47%, 16%, 11%, 11% and 16%, respectively. Water exchange (with drainage) of 19% of farmer seems unnecessary according to the water quality. It was found that FWE to avoid hypoxia or improve water quality was significantly higher than the other three conditions (P < 0. 05). FWE was negatively correlated with the fequency of artificial aeration (r=-0. 177, P < 0. 1). 111 water quality samples from 64 common fish ponds were obtained through field monitoring in Suzhou and Yancheng City, and the results show that the average ρ (DO), pH, ρ (TN), ρ (NH4+-N), ρ (TP), ρ (PO43--P), CODMn, ρ (chlorophyll a) were (8. 3±2. 7) mg·L-1, 8. 1±0. 5, (4. 3±2. 2) mg·L-1, (1. 0±1. 0) mg·L-1, (0. 56±0. 56) mg·L-1, (0. 29±0. 37) mg·L-1, (12±5) mg·L-1, (133±12) μg·L-1, respectively, and the average FWE was (0. 87±2. 10) times·month-1. The water quality and FWE varied greatly among different ponds. FWE was negatively correlated with ρ (DO) and pH (P < 0. 01), and positively correlated with temperature, ρ (NH4+-N), ρ (TP) and ρ (PO43--P) (P < 0. 01). FWE was influenced by both water exchange purpose and water quality status, which could be reduced by strengthening artificial aeration.
表 1 养蟹池塘换水频率(FWE)与增氧机开机强度分级
Table 1 Classification of the frequency of water exchange (FWE) and artificial aeration
级别换水频率/(d·次-1)增氧机开机强度/〔h·(7d)-1〕 3< 5> 42 26~1428~42 1>15< 28 由于大多池塘每次换水量在15%左右,对于抽取地下水补水的池塘,以估计补水量达原有水量的15%以上计为1次。表 2 池塘养蟹换水目的分类
Table 2 Classification of water exchange purpose in pond crab aquaculture
编号换水目的主要特征 1补偿蒸发仅补水不排水,包括为了提高水位的注水作业 2防止缺氧防止中华绒螯蟹浮头,即爬到水草上或岸边。包括预防缺氧的换水作业,非实际缺氧 3日常管理水草不出水面,水体溶氧状况良好,水质清澈,仅因养殖者主观认为经常换水有好处而进行的换水作业 4病害防控出现病害后为了改善水质而换水(大多水质很好),包括施用药物后为了减少药物的残留而进行的换水作业 5改善水质由于水色浑浊、水华发生而进行的换水作业,大多由于水草过早衰败所致表 3 蟹塘换水目的对换水频率(FWE)的影响
Table 3 The effect of water exchange purpose on water exchange frequency
换水首要原因蟹农户数蟹农占比/%每次换水量/%换水频率等级增氧机使用等级 补偿蒸发27475~201.3±0.52.1±0.8 防止缺氧91610~302.9±0.31.7±0.9 日常管理61110~301.3±0.52.0±0.9 病害防控61110~301.5±0.82.2±0.8 改善水质91610~302.7±0.52.0±0.9 换水频率等级和增氧机使用等级划分方法见表 1。表 4 养鱼池塘水质概况
Table 4 Water quality status of investigated fish ponds
水质指标ρ(DO)/(mg·L-1)pH值ρ(TN)/(mg·L-1)ρ(NH4+-N)/(mg·L-1)ρ(TP)/(mg·L-1)ρ(PO43--P)/(mg·L-1)CODMn/(mg·L-1)ρ(Chl-a)/(µg·L-1)换水频率/(次·月-1) 最大值15.09.29.64.53.31.726804.015 最小值2.56.50.9< 0.050.07< 0.0541.40 平均值±标准差8.3±2.78.1±0.54.3±2.21.0±1.00.56±0.560.29±0.3712±5133±120.96±2.56表 5 换水频率(FWE)与水质指标的相关系数
Table 5 Correlation coefficients between the frequency of water exchange and the parameters of water quality
水质指标相关系数rP值 DO浓度−0.547**< 0.001 pH值−0.412**< 0.001 水温0.500**< 0.001 TN浓度0.0410.673 NH4+-N浓度0.248**0.009 TP浓度0.516**< 0.001 PO43--P浓度0.322**0.001 Chl-a浓度−0.0110.908 CODMn0.1110.244 **表示在0.01水平上显著相关。 [1]LUSHCHAK V L, BAGNYUKOVA T V, LUSHCHAK O V, et al. Hypoxia and Recovery Perturb Free Radical Processes and Antioxidant Potential in Common Carp(Cyprinus carpio) Tissues[J]. The International Journal of Biochemistry & Cell Biology, 2005, 37(6):1319-1330. http://www.sciencedirect.com/science/article/pii/S1357272505000269
[2]DUAN Y, LIU Q, WANG Y, et al. Impairment of the Intestine Barrier Function in Litopenaeus vannamei Exposed to Ammonia and Nitrite Stress[J]. Fish & Shellfish Immunology, 2018, 78:279-288.
[3]MOHANTY R K, MISHRA A, PANDA D K, et al. Effects of Water Exchange Protocols on Water Quality, Sedimentation Rate and Production Performance of Penaeus monodon in Earthen Ponds[J]. Aquaculture Research, 2015, 46:2457-2468. DOI: 10.1111/are.2015.46.issue-10
[4] SC/T 1008-2012, 淡水鱼苗种池塘常规培育技术规范[S].SC/T 1008-2012, General Technical Specification for Cultivating Freshwater Fish Fry and Fingerling in Pond[S].
[5] 戴修赢.苏州地区7种养殖池塘水质及其氮、磷收支研究[D].苏州: 苏州大学, 2010. http://d.wanfangdata.com.cn/Thesis/Y1732861DAI Xiu-ying. Study on the Water Quality and Nitrogen, Phosphorus Budget of Seven Types of Aquaculture Ponds in Suzhou Region[D]. Suzhou: Suzhou University, 2010. http://d.wanfangdata.com.cn/Thesis/Y1732861
[6] 黄永平, 刘可群, 苏荣瑞, 等.淡水养殖水体溶解氧含量诊断分析及浮头泛塘气象预报[J].长江流域资源及环境, 2014, 23(5):638-643. http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201405007HUANG Yong-ping, LIU Ke-qun, SU Rongrui, et al. Meteorological Influencing Elements of Dissolved Oxygen Concentration in Fish Ponds and New Models to Forecast Fish Floating Head[J]. Resources and Environment in the Yangtze Basin, 2014, 23(5):638-643. http://d.old.wanfangdata.com.cn/Periodical/cjlyzyyhj201405007
[7] 毕永红, 胡征宇.水色及其与藻类的关系[J].生态科学, 2015, 24(1):66-68. http://www.cnki.com.cn/Article/CJFDTOTAL-STKX200501020.htmBI Yong-hong, HU Zheng-yu. Relationship Between Watercolor and Phytoplankton[J]. Ecologic Science, 2015, 24(1):66-68. http://www.cnki.com.cn/Article/CJFDTOTAL-STKX200501020.htm
[8] 范长禄.伊乐藻净化富营养化水体中氮磷的效用和生理机制研究[D].扬州: 扬州大学. 2014. http://cdmd.cnki.com.cn/Article/CDMD-11117-1014361956.htmFAN Chang-lu. Research of the Purification Efficiency of Nitrogen Phosphorus in Eutrophic Water and the Physiological Mechanism of Elodea canadensis[D]. Yangzhou: Yangzhou University, 2014. http://cdmd.cnki.com.cn/Article/CDMD-11117-1014361956.htm
[9] 徐升宝.东太湖内源氮、磷释放及两种沉水植物净化作用的研究[D].苏州: 苏州大学. 2011. http://d.wanfangdata.com.cn/Thesis/Y1926266XU Sheng-bao. Study on Eendogenous Nitrogen, Phosphorus Release and Purification Effect of Two Kinds of Submerged Plants in East Taihu Lake[D]. Suzhou: Suzhou University. http://d.wanfangdata.com.cn/Thesis/Y1926266
[10]CAI Chun-fang, GU Xiao-hong, HUANG He-zhong, et al. Water Quality, Nutrient Budget, and Pollutant Loads in Chinese mitten crab(Eriocheir sinensis) Farms Around East Taihu Lake[J]. Chinese Journal of Oceanology and Limnology, 2012, 30(1):29-36. DOI: 10.1007/s00343-012-1034-x
[11] 国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M]. 4版.中国环境科学出版社, 2002.State Environmental Protection Administration of China. Monitoring and Analysis Methods for Water and Wastewater[M].4th ed. Beijing: China Environmental Science Press, 2002.
[12] 徐彩平, 刘霞, 陈宇炜.浮游植物叶绿素a浓度测定方法的比较研究[J].生态与农村环境学报, 2013, 29(4):438-442. DOI: 10.3969/j.issn.1673-4831.2013.04.006XU Cai-ping, LIU Xia, CHEN Yu-wei. Comparison of Methods for Determination of Phytoplankton Chlorophyll-a[J]. Journal of Ecology and Rural Environment, 2013, 29(4):438-442. DOI: 10.3969/j.issn.1673-4831.2013.04.006
[13] 高月香, 张毅敏, 王伟民, 等.太湖流域江苏地区代表性水产养殖排污系数测算研究[J].农业环境科学学报, 2017, 36(7):1330-1336. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201707015GAO Yue xiang, ZHANG Yi min, WANG Wei-min, et al. Study on Calculation of Representative Aquaculture Pollution Discharging Coefficients in the Taihu Lake Basin Within Jiangsu Province[J]. Journal of Agro Environment Science, 2017, 36(7):1330-1336. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201707015
[14]LARA-ANGUIANO G F, ESPARZA-LEAL H M, SAINZ-HERNANDEZ J C, et al. Effects of Inorganic and Organic Fertilization on Physicochemical Parameters, Bacterial Concentrations, and Shrimp Growth in Litopenaeus vannamei Cultures with Zero Water Exchange[J]. Journal of the World Aquaculture Society, 2013, 44(4):499-510. DOI: 10.1111/jwas.2013.44.issue-4
[15] 张澎浪, 孙承军.地表水体中藻类的生长对pH值及溶解氧含量的影响[J].中国环境监测, 2004, 20(4):49-50. DOI: 10.3969/j.issn.1002-6002.2004.04.016ZHANG Peng-lang, SUN Cheng-jun. The Influence of Algae Growing on pH and DO in Surface Water[J]. Environmental Monitoring in China, 2004, 20(4):49-50. DOI: 10.3969/j.issn.1002-6002.2004.04.016
[16]MARCHAO L, DA SILVA T L, GOUVEIA L, et al. Microalgaemediated Brewery Wastewater Treatment:Effect of Dilution Rate on Nutrient Removal Rates, Biomass Biochemical Composition, and Cell Physiology[J]. Journal of Applied Phycology, 2018, 30(3):1583-1595. DOI: 10.1007/s10811-017-1374-1
[17] 唐汇娟, 谢平, 陈非洲.微囊藻的昼夜垂直变化及其迁移[J].中山大学学报(自然科学版), 2003, 42(增刊2):236-239. http://d.old.wanfangdata.com.cn/Periodical/zsdxxb2003z2051TANG Hui-juan, XIE-Ping, CHEN Fei-zhou. Diurnal and Vertical Migration Pattern of Microcystis in a Shallow Hypereutrophic Lake[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2003, 42(Suppl.2):236-239. http://d.old.wanfangdata.com.cn/Periodical/zsdxxb2003z2051
[18] 唐森铭, 陈兴群.泉州湾水域浮游植物群落的昼夜变化[J].海洋学报, 2008, 28(4):129-137. http://d.old.wanfangdata.com.cn/Periodical/hyxb200604017TANG Sen-ming, CHEN Xing-qun. Phytoplankton Diel Rhythm in the Waters of Quanzhou Bay in Fujian, China[J]. Acta Oceanologica Sinica, 2008, 28(4):129-137. http://d.old.wanfangdata.com.cn/Periodical/hyxb200604017
[19]SOROKIN C, KRAUSS, R W. Maximum Growth Rates of Chlorella in Steady State and in Synchronized Cultures[J]. PNAS, 1959, 45(12):1740-1744. DOI: 10.1073/pnas.45.12.1740
[20]KRATZ W A, MYERS J. Nutrition and Growth of Several Bluegreen Algae[J]. American Journal of Botany, 1955, 42:282-287. DOI: 10.1002/j.1537-2197.1955.tb11120.x
[21] 刘绍俊, 艾德平, 祁云宽, 等.星云湖藻量昼夜变化节律及垂直分布初步研究[J].环境科学导刊, 2015, 34(5):1-4. DOI: 10.3969/j.issn.1673-9655.2015.05.001LIU Shao-jun, AI De-ping, QI Yun-kuan, et al. Preliminary Study on Diurnal Rhythm and Vertical Distribution of the Algae Biomass in Xingyun Lake[J]. Environmental Science Survey, 2015, 34(5):1-4. DOI: 10.3969/j.issn.1673-9655.2015.05.001
[22]KVAMME B, GADAN K, FINNE FRIDELL F, et al. Modulation of Innate Immune Responses in Atlantic Salmon by Chronic Hypoxia Induced Stress[J]. Fish & Shellfish Immunology, 2013, 34(1):55-65. http://www.sciencedirect.com/science/article/pii/S1050464812003622
[23]PANKHURST N W, LUDKE S L, KING H R, et al. The Relationship Between Acute Stress, Food Intake, Endocrine Status and Life History Stage in Juvenile Farmed Atlantic Salmon, Salmo salar[J]. Aquaculture, 2008, 275:311-318. DOI: 10.1016/j.aquaculture.2008.01.001
[24]SEGNER H, SUNDH H, BUCHMANN K, et al. Health of Farmed Fish:Its Relation to Fish Welfare and Its Utility as Welfare Indicator[J]. Fish Physiology and Biochemistry, 2012, 38:85-105. DOI: 10.1007/s10695-011-9517-9
[25]MALTEZ L C, STRINGHETTA G R, ENAMORADO A D, et al. Ammonia Exposure and Subsequent Recovery Trigger Oxidative Stress Responses in Juveniles of Brazilian Flounder Paralichthys orbignyanus[J]. Fish Physiology and Biochemistry, 2017, 43(6):1747-1759. DOI: 10.1007/s10695-017-0406-8
[26] 徐杨, 肖炜, 李大宇, 等.慢性氨氮胁迫对尼罗罗非鱼幼鱼生长及生理功能的影响[J].南方水产科学, 2015(2):327-331. http://d.old.wanfangdata.com.cn/Periodical/gxnykx201502030XU Yang, XIAO Wei, LI Da-yu, et al. Effects of Chronic Ammonia Stress on Growth and Physiological Function of Juvenile Nile Tilapia(Oreochromis niloticus)[J]. South China Fisheries Science, 2015(2):327-331. http://d.old.wanfangdata.com.cn/Periodical/gxnykx201502030
[27] 刘娥.草幼鱼对氨氮胁迫的形态及生理学响应[D].济南: 山东大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10422-1013219428.htmLIU E. Morphology and Physiological Response of Juvenile Grass Carp to Ammonia Nitrogen Stress[D]. Jinan: Shangdong University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10422-1013219428.htm
[28]ZHAO Cong-cong, XU Jing-tao, XU Xiao-li, et al. Organ-Specific Responses to Total Ammonia Nitrogen Stress on Juvenile Grass Carp(Ctenopharyngodon idellus)[J]. Environmental Science and Pollution Research, 2019, 26(11):10826-10834. DOI: 10.1007/s11356-019-04524-4
[29]JIA Rui, LIU Bao liang, HAN Cen, et al. Effects of Ammonia Exposure on Stress and Immune Response in Juvenile Turbot (Scophthalmus maximus)[J]. Aquaculture Research, 2017, 48:3149-3162. DOI: 10.1111/are.2017.48.issue-6
相关知识
池塘养殖换水目的和水质状态对换水频率的影响
多长时间给鱼缸换水:鱼缸换水频率的决定因素
水培养花换水(水培花卉换水方法)
绿萝换水频率
绿萝换水频率.pptx
水养殖绿萝需要换水么,水养绿萝需要换水吗
水培植物换水频率如何设置?(探索水培植物最佳换水周期)
金鱼如何换水,金鱼换水的正确方法介绍
下虑鱼缸多久换水 换水频率:下虑鱼缸需定期换水
龙虾池怎么换水?
网址: 池塘养殖换水目的和水质状态对换水频率的影响 https://m.huajiangbk.com/newsview1671741.html
上一篇: 养甲鱼喂什么饲料 |
下一篇: 给鱼换水什么时候最合适? |