摘要:
近年来,随着稀土产量与需求之间的供需矛盾日益加深,对稀土资源的高效绿色提取和分离提出了更高的要求. 特别是从稀土矿选矿废水、精炼废水、海水和温泉等低浓度的稀土溶液中回收稀土资源已成为研究热点. 相比于蒸发结晶、化学沉淀、溶剂萃取等传统提取技术,吸附法因具有操作简单、成本低廉、处理量大和适应性强等优势,成为低浓度稀土深度回收的潜在方法之一. 本文汇总了近年来国内外有关于稀土离子吸附材料的研究进展,详细介绍了矿物基、碳基、金属−有机框架基和高分子基等吸附材料的设计与合成思路、微观形貌、吸附行为、材料性能和潜在的应用潜力. 最后,对比指出了各种吸附材料的优势和不足,提出开发面向应用的高效绿色靶向吸附材料是未来稀土吸附材料的主要发展趋势,靶向吸附技术也将成为低浓度稀土溶液(废水)资源化的主要方法,以期为稀土资源的高效利用提供参考.
Abstract:
Recently, with the persistently increasing demand and production of rare earth metals, the efficient and green recovery of rare earth resources has encouraged higher requirements. Particularly, the recovery of rare earth elements (REEs) from low-concentration rare earth solutions such as rare earth mineral processing wastewater, refining wastewater, seawater, and hot springs has become a research hotspot. Compared with conventional extraction methods, such as evaporative crystallization, chemical precipitation, and solvent extraction, adsorption holds promise for low-concentration rare earth recovery due to its advantages of simple operation, low cost, large treatment capacity, and strong adaptability. This paper meticulously outlines the recent research advancements on rare earth ion adsorption materials and introduces mineral-based, carbon-based, metal–organic framework (MOF)-based, and polymer-based adsorbents and their design ideas, microscopic morphologies (specific surface area, pore size, and particle geometric dimension), adsorption behaviors (adsorption kinetics and adsorption isotherm), material performances (maximum adsorption capacity, adsorption–desorption cycles, and stability), and potential applications (pH, dosage, coexisting competing ions, and actual REE wastewater treatment effect). Mineral-based adsorbent materials are characterized by clay minerals of layered silicate type; carbon-based adsorbent materials include biochar, graphene, and carbon nanotubes; MOF materials include the Zeolitic imidazolate framework (ZIF), University of Oslo (UIO), Materials of Institut Lavoisier (MIL), and Hong Kong University of Science and Technology (HKUST) series; polymer-based materials include natural and artificial polymers and hydrogels. Single-material adsorbents usually have low adsorption capacity, poor selectivity, and weak mechanical strength and are unstable under acidic conditions. To overcome these disadvantages, composite materials can be prepared, which capitalize on the benefits of their individual materials, e.g., use of polymer hydrogels loaded with fine-grained mineral materials to prevent agglomeration, in-situ MOF growth on the surface of graphene oxide to improve its stability in acidic conditions, use of polymers with specific functional groups that contain O, N, and P to alter porous materials to improve adsorption capacity, and magnetization modification of carbon-based materials and polymers to facilitate the subsequent recycling. Finally, the following future development trends of rare earth adsorbents are proposed: 1) development of green adsorbent materials, including green raw materials and no new pollution in the process, 2) development of highly selective adsorbent materials that can extract REEs from competing impurity ions and achieve the separation of a single rare earth among the REEs, and 3) development of high-efficiency adsorbent materials including REE extraction from low-concentration rare earth solutions and fast adsorption kinetics and their applications in the field of REE wastewater treatment.
图 1 矿物基吸附剂微观形貌. (a)酸改性蒙脱石; (b)蒙脱石颗粒; (c) ALG@KLN; (d) PAA−KLN[40−43]
Figure 1. Micromorphology of mineral-based adsorbents: (a) acid-modified montmorillonite; (b) montmorillonite particles; (c) ALG@KLN; (d) PAA−KLN[40−43]
图 2 稀土离子在矿物基吸附剂上吸附[37, 40−43]
Figure 2. Adsorption of rare earth ions on mineral-based adsorbents[37, 40−43]
图 3 碳基吸附剂微观形貌. (a) EDTA−AC; (b) NWC−N; (c) MWNT−sil; (d) Fe3O4/C/GO−APTS; (e) GO@Tip−Sponge[49−53]
Figure 3. Micromorphologies of carbon-based adsorbents: (a) EDTA−AC; (b) NWC−N; (c) MWNT−sil; (d) Fe3O4/C/GO−APTS; (e) GO@Tip−Sponge[49−53]
图 4 稀土离子在碳基吸附剂上吸附[48−53]
Figure 4. Adsorption of rare earth ions on carbon-based adsorbents[48−53]
图 5 MOFs基吸附剂微观形貌. (a) HKUST−1; (b) Zn−BDC MOF/GO; (c) Zn−BTC MOF/NG; (d) MIL−101−C50/H50/T50; (e) MIL-101-ED/DETA/PMIDA; (f) PMIDA@FeBTC MOF[56, 60−61, 63−64, 66]
Figure 5. Micromorphologies of MOF-based adsorbents: (a) HKUST−1; (b) Zn−BDC MOF GO; (c) Zn−BTC MOF NG; (d) MIL−101−C50/H50/T50; (e) MIL−101−ED/DETA/PMIDA; (f) PMIDA@FeBTC MOF[56, 60−61, 63−64, 66]
图 6 稀土离子在MOFs基吸附剂上吸附 [56, 60−61, 63−64, 66]
Figure 6. Adsorption of rare earth ions on MOF-based adsorbents[56, 60−61, 63−64, 66]
图 7 聚合物基吸附剂微观形貌. (a) Alg−clay−PNPAm; (b) SCB−hydrogel; (c) CYIT; (d) M−PPTA; (e) TFPM−BTD,TFPM−DBD; (f) Tb−MEL,Tp−MEL [69−74]
Figure 7. Micromorphologies of polymer-based adsorbents: (a) Alg−clay−PNPAm; (b) SCB−hydrogel;(c) CYIT;(d) M−PPTA;(e) TFPM−BTD and TFPM−DBD; (f) Tb−MEL and Tp−MEL[69−74]
图 8 稀土离子在聚合物基吸附剂上吸附[69−74]
Figure 8. Adsorption of rare earth ions on polymer-based adsorbents[69−74]
图 9 各种吸附材料优缺点
Figure 9. Main advantages and disadvantages of each adsorbent
[1]Zhang T Y, Yuan Z F, Wang R Y, et al. Effect of alloy composition on wetting behavior of Sn‒Co‒La alloy on NdFeB substrate. Phys B Condens Matter, 2022, 636: 413886 doi: 10.1016/j.physb.2022.413886
[2] 刘晓璐, 赵子希, 桂子郁, 等. 微生物技术在稀土资源利用中的研究进展. 工程科学学报, 2020, 42(1):60Liu X L, Zhao Z X, Gui Z Y, et al. Overview of microbial technology in the utilization of rare earth resources. Chin J Eng, 2020, 42(1): 60
[3]Coey J M D. Perspective and prospects for rare earth permanent magnets. Engineering, 2020, 6(2): 119 doi: 10.1016/j.eng.2018.11.034
[4]Lin H, Xu J, Huang Q M, et al. Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12: Ce3+ persistent phosphor potentially applicable in AC-LED. ACS Appl Mater Interfaces, 2015, 7: 21835 doi: 10.1021/acsami.5b06071
[5]Wei X Y, Gao Y F, Han J W, et al. Optimisation of extraction of valuable metals from waste LED via response surface method. Trans Nonferrous Met Soc China, 2023, 33(3): 938 doi: 10.1016/S1003-6326(23)66157-6
[6]Zhu Q Q, Meng Y, Zhang H, et al. YAGG: Ce phosphor-in-YAG ceramic: An efficient green color converter suitable for high-power blue laser lighting. ACS Appl Electron Mater, 2020, 2: 2644 doi: 10.1021/acsaelm.0c00512
[7]Shaaban M H, Rammah Y S, Ahmed E M, et al. Fabrication, physical, thermal and optical properties of oxyfluoride glasses doped with rare earth oxides. J Mater Sci Mater Electron, 2021, 32(14): 18951 doi: 10.1007/s10854-021-06410-7
[8]Li Y C, Tian Y, Huang F F, et al. Excellent luminescence performance in oxide amorphous solids via hybrid-structure-fluctuation control using chloride. J Lumin, 2021, 229: 117680 doi: 10.1016/j.jlumin.2020.117680
[9] 吉力强, 赵瑞霞, 王东杰, 等. 稀土系储氢合金和镍氢电池产业现状及标准化体系建设研究. 稀土, 2018, 39(1):149Ji L Q, Zhao R X, Wang D J, et al. Study on the current situation and standardization system construction of the RE-based hydrogen storage alloy and nickel metal hydride batteries. Chin Rare Earths, 2018, 39(1): 149
[10] 李军鹏, 邓安强, 杨洋, 等. La‒Y‒Ni系A5B19型退火合金的相结构和电化学性能. 中国有色金属学报, 2022, 32(3):788Li J P, Deng A Q, Yang Y, et al. Phase structure and electrochemical properties of La‒Y‒Ni-based A5B19-type annealed alloys. Chin J Nonferrous Met, 2022, 32(3): 788
[11]Jiang W Q, Chen Y J, Hu M R, et al. Rare earth‒Mg‒Ni-based alloys with superlattice structure for electrochemical hydrogen storage. J Alloys Compd, 2021, 887: 161381 doi: 10.1016/j.jallcom.2021.161381
[12]Akah A. Application of rare earths in fluid catalytic cracking: A review. J Rare Earths, 2017, 35: 941 doi: 10.1016/S1002-0721(17)60998-0
[13]Shimada I, Takizawa K, Fukunaga H, et al. Catalytic cracking of polycyclic aromatic hydrocarbons with hydrogen transfer reaction. Fuel, 2015, 161: 207 doi: 10.1016/j.fuel.2015.08.051
[14] 池汝安, 王淀佐. 稀土矿物加工. 北京:科学出版社, 2014Chi R A, Wang D Z. Rare Earth Mineral Processing. Beijing: Science Press, 2014
[15] 池汝安, 刘雪梅. 风化壳淋积型稀土矿开发的现状及展望. 中国稀土学报, 2019, 37(2):129Chi R A, Liu X M. Prospect and development of weathered crust elution-deposited rare earth ore. J Chin Soc Rare Earths, 2019, 37(2): 129
[16]Diallo M S, Kotte M R, Cho M. Mining critical metals and elements from seawater: Opportunities and challenges. Environ Sci Technol, 2015, 49: 9390 doi: 10.1021/acs.est.5b00463
[17]Virta R. Mineral commodity summaries 2011—2023 [J/OL]. US Geological Survey (2022-01-31) [2023-10-23]. https://doi.org/10.3133/mcs2022
[18]Tao Y, Shen L, Feng C, et al. Distribution of rare earth elements (REEs) and their roles in plant growth: A review. Environ Pollut, 2022, 298: 118540 doi: 10.1016/j.envpol.2021.118540
[19]Altomare A J, Young N A, Beazley M J. A preliminary survey of anthropogenic gadolinium in water and sediment of a constructed wetland. J Environ Manag, 2020, 255: 109897 doi: 10.1016/j.jenvman.2019.109897
[20] 赵龙胜, 黄小卫, 冯宗玉, 等. 风化壳淋积型稀土矿开采过程污染防控技术现状及趋势. 中国稀土学报, 2022, 40:988 doi: 10.1016/j.jre.2021.04.006Zhao L S, Huang X W, Feng Z Y, et al. Research progresses and development tendency of pollution prevention and control technologies for mining of weathered crust elution-deposited rare earth ore. J Chin Soc Rare Earths, 2022, 40: 988 doi: 10.1016/j.jre.2021.04.006
[21] 严春杰, 罗文君, 周森, 等. 稀土生产废水处理技术. 武汉:中国地质大学出版社, 2016Yan C J, Luo W J, Zhou S, et al. Rare Earth Production Wastewater Treatment Technology. Wuhan: China University of Geosciences Press, 2016
[22] 刘洪娜, 李力, 任艺君, 等. 南太平洋富稀土海区海水中的溶解态稀土元素空间分布特征研究. 海洋学报, 2023, 45:1Liu H N, Li L, Ren Y J, et al. The spatial distribution characteristics of dissolved rare earth elements in seawater of REY-enriched region in South Pacific Ocean. Haiyang Xuebao, 2023, 45: 1
[23]Wang Z L, Yamada M. Geochemistry of dissolved rare earth elements in the Equatorial Pacific Ocean. Environ Geol, 2007, 52: 779 doi: 10.1007/s00254-006-0515-7
[24]Kato Y, Fujinaga K, Nakamura K, et al. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat Geosci, 2011, 4: 535 doi: 10.1038/ngeo1185
[25]Li B, Kong Q M, Wang G C, et al. Controls on the behaviors of rare earth elements in acidic and alkaline thermal springs. Appl Geochem, 2022, 143: 105379 doi: 10.1016/j.apgeochem.2022.105379
[26]Sanada T, Takamatsu N, Yoshiike Y. Geochemical interpretation of long-term variations in rare earth element concentrations in acidic hot spring waters from the Tamagawa geothermal area, Japan. Geothermics, 2006, 35: 141 doi: 10.1016/j.geothermics.2006.02.004
[27]Merroune A, Brahim J A, Achiou B, et al. Closed-loop purification process of industrial phosphoric acid: Selective recovery of heavy metals and rare earth elements via solvent extraction. Desalination, 2024, 580: 117515 doi: 10.1016/j.desal.2024.117515
[28]Ge X K, Xie M, Chen G, et al. Minerals recovery from a rare earth extraction wastewater by a combined chemical precipitation and membrane distillation process. Sep Purif Technol, 2023, 308: 122899 doi: 10.1016/j.seppur.2022.122899
[29] 许晓芳, 谭全银, 刘丽丽, 等. 稀土元素分离与提纯技术研究现状及展望. 环境污染与防治, 2019, 41(7):844Xu X F, Tan Q Y, Liu L L, et al. A review on development and prospect of rare earth elements separation and purification technologies. Environ Pollut Contr, 2019, 41(7): 844
[30]Abreu R D, Morais C A. Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide. Miner Eng, 2010, 23(6): 536 doi: 10.1016/j.mineng.2010.03.010
[31]Li D Q. Development course of separating rare earths with acid phosphorus extractants: A critical review. J Rare Earths, 2019, 37: 468 doi: 10.1016/j.jre.2018.07.016
[32]Zhang X K, Zhou K G, Chen W, et al. Recovery of iron and rare earth elements from red mud through an acid leaching-stepwise extraction approach. J Cent South Univ, 2019, 26(2): 458 doi: 10.1007/s11771-019-4018-6
[33] 马晨, 徐源来, 马驰远, 等. 稀释剂对3-氧戊二酰胺类萃取剂萃取稀土的影响. 中国有色金属学报, 2019, 29(11):2681Ma C, Xu Y L, Ma C Y. Effects of diluents on extraction of rare earth by 3-oxoglutaramide extractants. Chin J Nonferrous Met, 2019, 29(11): 2681
[34]Anastopoulos I, Bhatnagar A, Lima E C. Adsorption of rare earth metals: A review of recent literature. J Mol Liq, 2016, 221: 954 doi: 10.1016/j.molliq.2016.06.076
[35]Kegl T, Košak A, Lobnik A, et al. Adsorption of rare earth metals from wastewater by nanomaterials: A review. J Hazard Mater, 2020, 386: 121632 doi: 10.1016/j.jhazmat.2019.121632
[36] 吴诗情, 郭建华, 王玺凯, 等. 湘中地区早寒武世牛蹄塘组黑色岩系地球化学特征与有机质富集机理. 中南大学学报(自然科学版), 2020, 51(8):2049 doi: 10.11817/j.issn.1672-7207.2020.08.001Wu S Q, Guo J H, Wang X K, et al. Geochemical characteristics and organic matter enrichment mechanism of the Lower Cambrian Niutitang Formation black rock series in central Hunan. J Cent South Univ Sci Technol, 2020, 51(8): 2049 doi: 10.11817/j.issn.1672-7207.2020.08.001
[37]Borst A M, Smith M P, Finch A A, et al. Adsorption of rare earth elements in regolith-hosted clay deposits. Nat Commun, 2020, 11(1): 4386 doi: 10.1038/s41467-020-17801-5
[38] 周贺鹏. 谢帆欣, 张永兵, 等. 离子型稀土矿地球化学特征与物性研究. 稀有金属, 2022, 46(1):78Zhou H P, Xie F X, Zhang Y B, et al. Geochemical characteristics and physical properties of ion adsorption type rare earth ore. Chin J Rare Met, 2022, 46(1): 78
[39]Alshameri A, He H P, Xin C, et al. Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: Adsorption operative parameters. Hydrometallurgy, 2019, 185: 149 doi: 10.1016/j.hydromet.2019.02.016
[40]Liu X, Zhou F, Chi R, et al. Preparation of modified montmorillonite and its application to rare earth adsorption. Minerals, 2019, 9(12): 747 doi: 10.3390/min9120747
[41] 舒诗凯. 颗粒化蒙脱石的制备及其对低浓度稀土吸附特性研究[学位论文]. 赣州:江西理工大学, 2021Shu S K. Preparation of Granulated Montmorillonite and its Adsorption Properties for Low Concentration Rare Earth [Dissertation]. Ganzhou: Jiangxi University of Science and Technology, 2021
[42]Wei X Y, Mao X H, Qin W Q, et al. Synthesis of a green ALG@KLN adsorbent for high-efficient recovery of rare earth elements from aqueous solution. Sep Purif Technol, 2023, 325: 124690 doi: 10.1016/j.seppur.2023.124690
[43]Zhou Q, Fu Y X, Zhang X, et al. Light induced growth of polyelectrolyte brushes on kaolinite surface with superior performance for capturing valuable rare-earth Ce3+ from wastewater. Mater Sci Eng B, 2018, 227: 89 doi: 10.1016/j.mseb.2017.10.013
[44] 杜晓燕, 韩伟胜, 孟子涵, 等. 基于响应曲面法制备钢渣–花生壳基生态活性炭及其吸附性能研究. 工程科学学报, 2023, 45(6):979Du X Y, Han W S, Meng Z H, et al. Preparation of steel slag–peanut shell-based ecological activated carbon based on response surface method and its adsorption performance. Chin J Eng, 2023, 45(6): 979
[45] 田学坤, 王霞, 苏凯, 等. 生物质材料炭化的研究进展及其应用展望. 工程科学学报, 2023, 45(12):2026Tian X K, Wang X, Su K, et al. Research progress and application prospects of the carbonization of biomass materials. Chin J Eng, 2023, 45(12): 2026
[46]Shan R, Shi Y Y, Gu J, et al. Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems. Chin J Chem Eng, 2020, 28(5): 1375 doi: 10.1016/j.cjche.2020.02.012
[47]Misran E, Bani O, Situmeang E M, et al. Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: Isotherm, kinetics, and reusability. Alex Eng J, 2022, 61(3): 1946 doi: 10.1016/j.aej.2021.07.022
[48]Han J H, Song Y, Li H Y, et al. Preparation of novel magnetic porous biochar and its adsorption mechanism on cerium in rare earth wastewater. Ceram Int, 2023, 49(6): 9901 doi: 10.1016/j.ceramint.2022.11.165
[49]Babu C M, Binnemans K, Roosen J. Ethylenediaminetriacetic acid-functionalized activated carbon for the adsorption of rare earths from aqueous solutions. Ind Eng Chem Res, 2018, 57(5): 1487 doi: 10.1021/acs.iecr.7b04274
[50]Burakova I V, Burakov A E, Tkachev A G, et al. Kinetics of the adsorption of scandium and cerium ions in sulfuric acid solutions on a nanomodified activated carbon. J Mol Liq, 2018, 253: 277 doi: 10.1016/j.molliq.2018.01.063
[51]Ramasamy D L, Puhakka V, Doshi B, et al. Fabrication of carbon nanotubes reinforced silica composites with improved rare earth elements adsorption performance. Chem Eng J, 2019, 365: 291 doi: 10.1016/j.cej.2019.02.057
[52]Bao S Y, Wang Y J, Wei Z S, et al. Highly efficient recovery of heavy rare earth elements by using an amino-functionalized magnetic graphene oxide with acid and base resistance. J Hazard Mater, 2022, 424: 127370 doi: 10.1016/j.jhazmat.2021.127370
[53]Peng X Q, Mo S Q, Li R N, et al. Effective removal of the rare earth element dysprosium from wastewater with polyurethane sponge-supported graphene oxide-titanium phosphate. Environ Chem Lett, 2021, 19(1): 719 doi: 10.1007/s10311-020-01073-y
[54] 黄祎萌, 曹晓强, 尹继洁, 等. MOF材料在水环境污染物去除方面的应用现状及发展趋势(Ⅱ). 工程科学学报, 2020, 42(6):680Huang Y M, Cao X Q, Yin J J, et al. Review on the application of MOF materials for removal of pollutants from the water (Ⅱ). Chin J Eng, 2020, 42(6): 680
[55]Zavyalova A G, Kladko D V, Chernyshov I Y, et al. Large MOFs: Synthesis strategies and applications where size matters. J Mater Chem A, 2021, 9(45): 25258 doi: 10.1039/D1TA05283G
[56]Zhao L, Azhar M R, Li X J, et al. Adsorption of cerium (Ⅲ) by HKUST-1 metal-organic framework from aqueous solution. J Colloid Interface Sci, 2019, 542: 421 doi: 10.1016/j.jcis.2019.01.117
[57]Lv X L, Yuan S, Xie L H, et al. Ligand rigidification for enhancing the stability of metal-organic frameworks. J Am Chem Soc, 2019, 141(26): 10283 doi: 10.1021/jacs.9b02947
[58]Ehrnst Y, Ahmed H, Komljenovic R, et al. Acoustotemplating: Rapid synthesis of freestanding quasi-2D MOF/graphene oxide heterostructures for supercapacitor applications. J Mater Chem A, 2022, 10(13): 7058 doi: 10.1039/D1TA10493D
[59]Haeri Z, Ramezanzadeh B, Ramezanzadeh M. Recent progress on the metal-organic frameworks decorated graphene oxide (MOFs-GO) nano-building application for epoxy coating mechanical-thermal/flame-retardant and anti-corrosion features improvement. Prog Org Coat, 2022, 163: 106645 doi: 10.1016/j.porgcoat.2021.106645
[60]Chen Z Y, Li Z, Chen J, et al. Selective adsorption of rare earth elements by Zn-BDC MOF/graphene oxide nanocomposites synthesized via in situ interlayer-confined strategy. Ind Eng Chem Res, 2022, 61(4): 1841 doi: 10.1021/acs.iecr.1c04180
[61]Wu J S, Li Z, Tan H X, et al. Highly selective separation of rare earth elements by Zn-BTC metal-organic framework/nanoporous graphene via in situ green synthesis. Anal Chem, 2021, 93(3): 1732 doi: 10.1021/acs.analchem.0c04407
[62]Yuan L Y, Tian M, Lan J H, et al. Defect engineering in metal-organic frameworks: a new strategy to develop applicable actinide sorbents. Chem Commun, 2018, 54(4): 370 doi: 10.1039/C7CC07527H
[63]Kavun V, van der Veen M A, Repo E. Selective recovery and separation of rare earth elements by organophosphorus modified MIL-101(Cr). Microporous Mesoporous Mater, 2021, 312: 110747 doi: 10.1016/j.micromeso.2020.110747
[64]Lee Y R, Yu K, Ravi S, et al. Selective adsorption of rare earth elements over functionalized Cr-MIL-101. ACS Appl Mater Interfaces, 2018, 10(28): 23918 doi: 10.1021/acsami.8b07130
[65]Fonseka C, Ryu S, Choo Y, et al. Selective recovery of rare earth elements from mine ore by Cr-MIL metal-organic frameworks. ACS Sustainable Chem Eng, 2021, 9(50): 16896 doi: 10.1021/acssuschemeng.1c04775
[66]Sinha S, De S, Mishra D, et al. Phosphonomethyl iminodiacetic acid functionalized metal organic framework supported PAN composite beads for selective removal of La(Ⅲ) from wastewater: Adsorptive performance and column separation studies. J Hazard Mater, 2022, 425: 127802 doi: 10.1016/j.jhazmat.2021.127802
[67] 韩松, 张添华, 肖龙恒, 等. 面向溢油污染治理的SiO2气凝胶疏水改性的研究进展. 工程科学学报, 2023, 45(6):949Han S, Zhang T H, Xiao L H, et al. Research progress of hydrophobic modification of silica aerogel for oil spill pollution treatment. Chin J Eng, 2023, 45(6): 949
[68] 刘婷, 刘源, 王晓栋, 等. 聚酰亚胺气凝胶材料的制备及其应用. 工程科学学报, 2020, 42(1):39Liu T, Liu Y, Wang X D, et al. Preparation and application of polyimide aerogel materials. Chin J Eng, 2020, 42(1): 39
[69]Wu D B, Gao Y W, Li W J, et al. Selective adsorption of La3+ using a tough alginate-clay-poly(n-isopropylacrylamide) hydrogel with hierarchical pores and reversible re-deswelling/swelling cycles. ACS Sustainable Chem Eng, 2016, 4(12): 6732 doi: 10.1021/acssuschemeng.6b01691
[70]Sethy T R, Biswal T, Sahoo P K. An indigenous tool for the adsorption of rare earth metal ions from the spent magnet e-waste: An eco-friendly chitosan biopolymer nanocomposite hydrogel. Sep Purif Technol, 2023, 309: 122935 doi: 10.1016/j.seppur.2022.122935
[71]Ren S B, Yang X B Tang L W, et al. A chitosan-based Y3+-imprinted hydrogel with reversible thermo-responsibility for the recovery of rare earth metal. Appl Surf Sci, 2023, 611: 155602 doi: 10.1016/j.apsusc.2022.155602
[72]Javadian H, Taghavi M, Ruiz M, et al. Adsorption of neodymium, terbium and dysprosium using a synthetic polymer-based magnetic adsorbent. J Rare Earths, 2023, 41(11): 1796 doi: 10.1016/j.jre.2022.08.021
[73]Huang L, Xiao B, Liu L H, et al. Selective recovery of Gd(Ⅲ) by benzimidazole- and benzoxazole-linked 3D porous polymers. J Water Process Eng, 2023, 51: 103378 doi: 10.1016/j.jwpe.2022.103378
[74]Xiao B, Huang L, Ou J C, et al. Synthesis of N, O-rich active site porous polymers and their efficient recovery of Gd(Ⅲ) from solution. J Rare Earths, 2023, 41(9): 1419 doi: 10.1016/j.jre.2022.08.012
相关知识
低浓度稀土离子吸附材料研究进展
开发基于稀土超富集植物的新型仿生吸附材料
用于吸附废水中重金属离子的新材料研究进展
环境净化材料及其应用技术研究进展
多孔硅酸镁高效吸附材料的构筑及其重金属离子吸附性能研究
黄腐酸类离子印迹材料的制备及其吸附研究
硝酸稀土对扶郎花生长发育及切花保鲜的影响
广玉兰、白玉兰稀土育苗研究
广西柳州稀土动植宝有限公司系列新产品——花仙子(稀土植宝花卉健长保鲜剂)
跃龙稀土:全国协作之花——庆祝上海跃龙化工厂投产20周年
网址: 低浓度稀土离子吸附材料研究进展 https://m.huajiangbk.com/newsview1673247.html
上一篇: 基于生物材料的花状MnO 2 @ |
下一篇: 开发基于稀土超富集植物的新型仿生 |