摘要:介绍了一类基于天然纤维素的水处理用吸附剂.对纤维素修饰羧基等阴离子基团,可以用来吸附水中的重金属阳离子(如Cd2+、Cu2+、Hg2+、Ni2+、Pb2+).对纤维素修饰铝铁或胺基等成分,可以吸附水中含砷阴离子、氟离子等有害阴离子.在纤维素上修饰疏水链,可以吸附水中氯苯、染料等危害健康的有机物.
关键词:纤维素 / 水处理 / 重金属 / 有害阴离子 / 有机物Abstract:This paper reviews the adsorbents based on natural cellulose for water treatment. Cellulose modified with negatively charged groups such as carboxyls can be used for the removal of heavy metal ions including Cd2+,Cu2+,Hg2+,Ni2+ and Pb2+. If cellulose is modified with anion adsorptive components such as aluminum, iron and amino groups, it can adsorb harmful anions such as fluoride and arsenic. Cellulose can also adsorb organics such as chlorobenzene and dyes if it is modified with hydrophobic chains.
[1]Tian J Y, Chen Z L, Nan J, et al. Integrative membrane coagulation adsorption bioreactor (MCABR) for enhanced organic matter removal in drinking water treatment[J]. Journal of Membrane Science, 2010, 352(1/2):205-212 [2]Li M A, Feng C P, Zhang Z Y, et al. Treatment of nitrate contaminated water using an electrochemical method[J]. Bioresource Technology, 2010, 101(16):6553-6557 [3]Sani B, Basile E, Rossi L, et al. Magnetic ion exchange resin treatment for drinking water production[J]. Journal of Water Supply Research and Technology-Aqua, 2009, 58(1):41-50 [4]Godino-Salido M L, Lopez-Garzon R, Arranz-Mascaros P, et al. Study of the adsorption capacity to Co2+, Ni2+ and Cu2+ ions of an active carbon/functionalized polyamine hybrid material[J]. Polyhedron, 2009, 28(17):3781-3787 [5]Szlachta M, Adamski W. Application of adsorption on powdered active carbon for the removal of dissolved organic substances from surface water[J]. Ochrona Srodowiska, 2009, 31(2):61-66 [6]Lim S F, Zheng Y M, Zou S W, et al. Characterization of copper adsorption onto an alginate encapsulated magnetic sorbent by a combined FT-IR, XPS and mathematical modeling study[J]. Environmental Science & Technology, 2008, 42(7):2551-2556 [7]Lim S F, Zheng Y M, Chen J P. Organic arsenic adsorption onto a magnetic sorbent[J]. Langmuir, 2009, 25(9):4973-4978 [8]Viswanathan N, Sundaram C S, Meenakshi S. Removal of fluoride from aqueous solution using protonated chitosan beads[J]. Journal of Hazardous Materials, 2009, 161(1):423-430 [9]Liu X W, Hu Q Y, Fang Z, et al. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal Ion removal[J]. Langmuir, 2009, 25(1):3-8 [10]Brunson L R, Sabatini D A. An evaluation of fish bone char as an appropriate arsenic and fluoride removal technology for emerging regions[J]. Environmental Engineering Science, 2009, 26(12):1777-1784 [11]Liao X P, Shi B. Adsorption of fluoride on zirconium (Ⅳ)-impregnated collagen fiber[J]. Environmental Science & Technology, 2005, 39(12):4628-4632 [12]Baek D H, Ki C S, Um I C, et al. Metal ion adsorbability of electrospun wool Keratose/Silk fibroin blend nanofiber mats[J]. Fibers and Polymers, 2007, 8(3):271-277 [13]Cruz-Guzman M, Celis R, Hermosin M C, et al. Adsorption of the herbicide simazine by montmorillonite modified with natural organic cations[J]. Environmental Science & Technology, 2004, 38(1):180-186 [14]Kim U J, Kuga S. Polyallylamine-grafted cellulose gel as high-capacity anion-exchanger[J]. Journal of Chromatography A, 2002, 946(1/2):283-289 [15]Alila S, Aloulou F, Beneventi D, et al. Self-aggregation of cationic surfactants onto oxidized cellulose fibers and coadsorption of organic compounds[J]. Langmuir, 2007, 23(7):3723-3731 [16]Aloulou F, Boufi S, Labidi J. Modified cellulose fibres for adsorption of organic compound in aqueous solution[J]. Separation and Purification Technology, 2006, 52(2):332-342 [17]Tashiro T, Shimura Y. Removal of mercuric ions by systems based on cellulose derivatives[J]. Journal of Applied Polymer Science, 1982, 27(2):747-756 [18]Gupta K C, Khandekar K. Temperature-responsive cellulose by ceric(Ⅳ) ion-initiated graft copolymerization of N-isopropylacrylamide[J]. Biomacromolecules, 2003, 4(3):758-765 [19]Gupta K C, Sahoo S, Khandekar K. Graft copolymerization of ethyl acrylate onto cellulose using ceric ammonium nitrate as initiator in aqueous medium[J]. Biomacromolecules, 2002, 3(5):1087-1094 [20]Gupta K C, Sahoo S. Graft copolymerization of acrylonitrile and ethyl methacrylate comonomers on cellulose using ceric ions[J]. Biomacromolecules, 2001, 2(1):239-247 [21]Gupta K C, Sahoo S. Grafting of acrylonitrile and methyl methacrylate from their binary mixtures on cellulose using ceric ions[J]. Journal of Applied Polymer Science, 2001, 79(5):767-778 [22]Hashem A. Amidoximated sunflower stalks (ASFS) as a new adsorbent for removal of Cu (Ⅱ) from aqueous solution[J]. Polymer-Plastics Technology and Engineering, 2006, 45(1):35-42 [23]Shibi I G, Anirudhan T S. Synthesis, characterization, and application as a mercury(Ⅱ) sorbent of banana stalk (Musa paradisiaca)-Polyacrylamide grafted copolymer bearing carboxyl groups[J]. Industrial & Engineering Chemistry Research, 2002, 41(22):5341-5352 [24]Bao Xiu Z, Peng W, Tong Z, et al. Preparation and adsorption performance of a cellulosic-adsorbent resin for copper(Ⅱ)[J]. Journal of Applied Polymer Science, 2006, 99(6):2951-2956 [25]Li X, Tang Y, Xuan Z, et al. Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution[J]. Separation and Purification Technology, 2007, 55(1):69-75 [26]Saliba R, Gauthier H, Gauthier R. Adsorption of heavy metal ions on virgin and chemically-modified lignocellulosic materials[J]. Adsorption Science & Technology, 2005, 23(4):313-322 [27]Guclu G, Gurdag G, Ozgumus S. Competitive removal of heavy metal ions by cellulose graft copolymers[J]. Journal of Applied Polymer Science, 2003, 90(8):2034-2039 [28]O'Connell D W, Birkinshaw C, O'Dwyer T F, A chelating cellulose adsorbent for the removal of Cu(Ⅱ) from aoueous solutions[J]. Journal of Applied Polymer Science, 2006, 99(6):2888-2897 [29]O'Connell D W, Birkinshaw C, O'Dwyer T F. A modified cellulose adsorbent for the removal of nickel(Ⅱ) from aqueous solutions[J]. Journal of Chemical Technology and Biotechnology, 2006, 81(11):1820-1828 [30]O'Connell D W, Birkinshaw C, O'Dwyer T F. Removal of lead(Ⅱ) ions from aqueous solutions using a modified cellulose adsorbent[J]. Adsorption Science & Technology, 2006, 24(4):337-347 [31]Zhao Y P, Huang M S, Wu W, et al. Synthesis of the cotton cellulose based Fe(Ⅲ)-loaded adsorbent for arsenic(Ⅴ) removal from drinking water[J]. Desalination, 2009, 249(3):1006-1011 [32]Mandal S, Mayadevi S. Cellulose supported layered double hydroxides for the adsorption of fluoride from aqueous solution[J]. Chemosphere, 2008, 72(6):995-998 [33]Anirudhan T S, Unnithan M R. Arsenic(V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery[J]. Chemosphere, 2007, 66(1):60-66 [34]Deniz F, Saygideger S D. Equilibrium, kinetic and thermodynamic studies of Acid Orange 52 dye biosorption by paulownia tomentosa steud. Leaf powder as a low-cost natural biosorbent[J]. Bioresource Technology, 2010, 101(14):5137-5143 [35]Boufi S, Belgacem M N. Modified cellulose fibres for adsorption of dissolved organic solutes[J]. Cellulose, 2006, 13(1):81-94 [36]Aloulou F, Boufi S, Belgacem N, et al. Adsorption of cationic surfactants and subsequent adsolubilization of organic compounds onto cellulose fibers[J]. Colloid and Polymer Science, 2004, 283(3):344-350 [37]Luo X G, Zhang L N, High effective adsorption of organic dyes on magnetic cellulose beads entrapping activated carbon[J]. Journal of Hazardous Materials, 2009, 171(1/3):340-347相关知识
兰州化物所发表吸附材料绿色构筑和可持续利用展望文章
用于去除各种水污染物的不同锆基吸附剂的合成和性能综合评价,Chemical Engineering Journal
木瓜(以木瓜为材料的甲醛吸附剂)
新型海水淡化“绿色”吸附剂面世
环境净化材料及其应用技术研究进展
何庆东在可循环再生高性能矿物基吸附剂研究方面取得进展
开发基于稀土超富集植物的新型仿生吸附材料
2025韩国水处理展览会参展攻略(时间地点,门票怎么预约?)
生长于土 终归于土 一根秸秆的绿色农业发展之路形成“闭环”
澳大利亚绿色经济交流论坛
网址: 纤维素基吸附剂——绿色、经济的水处理材料 https://m.huajiangbk.com/newsview1673259.html
上一篇: 金属有机框架材料MOF |
下一篇: 沸石分子筛低成本绿色合成及其温室 |