首页 > 分享 > 不同形貌纳米NiCo2O4的研究进展

不同形貌纳米NiCo2O4的研究进展

NiCo2O4是一种具有尖晶石结构的二元过渡金属氧化物, 其中, 镍离子占据八面体空隙, 钴离子占据全部的四面体及半数的八面体空隙[1,2], 其导电性及电化学活性远高于单一的镍、钴氧化物, 并且同时存在Co3+/Co2+和Ni3+/Ni2+氧化还原电对可进行多电子反应[3,4]。其晶体结构表面有多种活性中心和官能团, 如表面吸附的—OH基团、吸附氧等。因此, NiCo2O4具有独特的光、电、磁及催化性能, 在催化剂[5,6,7,8,9,10]、锂离子电池[11,12]等方向具有一定的研究价值, 且被广泛应用于超级电容器[13,14,15,16,17]领域。

除了材料的固有性质外, 形貌和尺寸也会极大地影响材料的性能[18,19,20]。如当金的尺寸降至几十纳米时, 表面等离子体的共振吸收会使其颜色变成粉色, 金表面的拉曼散射增强[21], 进一步收缩至3 nm以下时, 其催化活性会显著增强[22]; 如球形银粉依靠颗粒间的点接触可有效提高其导电性能, 被广泛应用于导电浆料[23]; 针状或者纤维状磁粉具有各向异性且矩形比大, 被广泛应用于高密度垂直磁记录材料[24]。同样, 各种形貌的纳米NiCo2O4材料的光、电、磁学性能不同, 应用的领域也有差异。如NiCo2O4纳米纤维结构稳定且能加速电子的转移, 对氧气析出反应有很高的电催化活性, 成为电解水方面的研究热点[25,26]; 纳米花、多孔网状结构NiCo2O4材料的比表面积大, 可改善电解质的渗透和离子转移, 在锂离子电池、超级电容器领域有着巨大的潜力[27,28,29]。选择合适的制备方法是调控材料形貌的有效手段, 不同的制备方法可以得到形貌各异的纳米NiCo2O4材料。因此, 本文拟就近年纳米NiCo2O4形貌控制合成的研究展开论述, 并指出今后的发展方向。

1 制备不同形貌的纳米NiCo2O4材料

1.1 三维形貌

三维结构材料因具有巨大的比表面积和高密度的缺陷而引起科研工作者的广泛关注, 尤其在催化、电池、化学传感器和电致变色器件等领域有巨大的应用潜力[30,31]。常见的三维形貌包括球状、纳米花、珊瑚状和三维复合结构等。合成三维纳米结构的方法主要有水热法、溶胶-凝胶法和微波合成法等。

1.1.1 球状

球状是纳米材料最常见的形貌之一, 采用水热法易得到球状纳米粒子。该方法采用水溶液作为反应介质, 并通过加热反应容器产生高温高压的环境, 从而达到控制材料形貌的目的。制备过程中, 水热反应主要控制NiCo2O4纳米材料前驱体的形貌, 热分解后即可得到球状结构的NiCo2O4[32,33]。水热法简单、高效、易控且成本低廉, 目前被广泛用于纳米结构的形貌控制合成。

Zou等[34]以水、乙醇混合溶液作为溶剂, 尿素作为缓释剂和沉淀剂, 通过水热法合成了三维结构的NiCo2O4微球。该微球由高长径比的超细纳米纤维组成, 且纳米纤维作为结构单元呈放射状分布于微球表面(图1)。用这种结构的NiCo2O4材料制备的电容器, 其比容量高(电流密度2 A/g时比容量达1284 F/g)、倍率性能良好、循环稳定性优越(3000次循环后仅损失2.5%)。Li等[35]以碳球为模板, 采用水热法制备了双层空心NiCo2O4球, 碳球的加入显著增加了NiCo2O4材料的比表面积(单层空心NiCo2O4球为76.6 m2/g, 双层空心NiCo2O4球为115.2 m2/g), 提升了比容量(电流密度1 A/g下比容量从445 F/g上升到568 F/g)。但碳球模板的使用增加了材料制备的成本, 不利于大规模工业化制备。

图1   水热法制备NiCo2O4微球煅烧(a)前(b)~(c)后的SEM照片; (d) NiCo2O4粉末XRD图谱[34]

Fig. 1   SEM images of NiCo2O4 microsphere prepared by hydrothermal method: (a) before and (b, c) after calcination with (d) XRD patterns of NiCo2O4 powders[34]

与水热法不同, 溶剂热法采用有机溶剂为反应环境, 有机溶剂的性质往往对产物的形貌有重要影响。Liu等[36]以乙二醇作溶剂, 采用简单的溶剂热法合成三维球状NiCo2O4, 并探究了在微波场的作用下, 不同形貌NiCo2O4对有机底物的催化降解性能。与NiCo2O4纳米片、纳米棒、纳米颗粒相比, 三维球状NiCo2O4催化降解效率最高: 仅10 min内, 该材料对刚果红的降解率就可达到90.1%, 其原因在于三维球状结构能有效利用微波场, 展示出比表面积大的特性。

1.1.2 纳米花

纳米花的合成主要是采用基于液相反应的“软化学”路线, 并通过自下而上的方法将纳米片或纳米纤维等初级结构单元组装成类似花状的多级结构。NiCo2O4纳米花的制备多采用水热法, 其中表面活性剂发挥了重要作用, 相关研究表明溴化十六烷三甲基铵(CTAB)、聚乙烯吡咯烷酮(PVP)、柠檬酸等表面活性剂有助于构建材料形貌与改善性能[2,37-39]。An等[38]使用PVP作为表面活性剂, 通过水热法制备了三维花状NiCo2O4, 其比表面积可达212.6 m2/g, 当电流密度为1 A/g时比容量高达1191.2 F/g。然而该条件制备的三维花状NiCo2O4在充放电过程中易发生结构坍塌, 循环稳定性不佳。Zhang等[40]同样在水热法中添加PVP并于180 ℃条件下合成了花状NiCo2O4, PVP作为结构导向剂通过配位效应可以有效地控制NiCo2O4的形貌[41]。在反应过程中, PVP通过吡咯烷酮环上的官能团与金属离子配位, 有利于晶粒的各向异性生长, 并将粒子组装成花状结构[42]。此外, NiCo2O4表面上吸附的PVP在热分解过程中发生脱附并放出气体, 有助于分级介孔结构的形成。Cheng等[43]通过水热法制备了三维花状镍钴氧化物(图2), 并研究了前驱体成分与热分解温度对产物形貌的影响。结果表明前驱体中镍含量越高, 相同热分解温度下产物的比表面积越大, 其原因在于NiO晶体尺寸更小且镍氢氧化物热分解温度更高。另外, 热分解温度也是影响产物多孔结构与颗粒大小的重要因素, 当热分解温度从300 ℃升高到500 ℃时, 比表面积缩小1/4。

图2   Ni/Co摩尔比为 (a) 1 : 0、 (b) 7 : 3、(c) 5 : 5、(d) 3 : 7和(e)~(f) 0 : 1的花状结构镍钴氧化物的SEM照片[43]

Fig. 2   SEM images of flower-like nickel-cobalt oxides prepared with initial Ni/Co molar ratio of (a) 1 : 0, (b) 7 : 3, (c) 5 : 5, (d) 3 : 7 and (e, f) 0 : 1[43]

水热法虽易于控制产物形貌, 但要求严格控制反应条件, 多数情况下还需要结构导向剂。而微波法作为一种常用的辅助手段也可用于花状结构的合成。微波辅助可以快速加热到设定温度, 促进结晶过程迅速进行, 同时促使NiCo2O4前驱体发生相转变[44,45]。Lei等[46]通过微波辅助法控制合成了花状NiCo2O4, 该花状结构由厚度约15 nm的花瓣状纳米片构筑而成(图3)。他们通过改变反应时间探究花状结构的形成机制。当反应时间非常短时(2 min), 产物由大量的纳米颗粒聚集而成; 反应时间达到5 min时, 样品开始呈现花状结构, 该结构由花瓣状纳米片组成, 纳米片上附着的纳米颗粒是下一阶段纳米片生长的位点; 反应时间达到15 min时形成完整的花状结构。

图3   (a)~(b) 微波辅助法获得的花状NiCo2O4的SEM照片, (c) 花状形貌形成过程示意图[46]

Fig. 3   (a, b) SEM images of flower-shaped NiCo2O4 prepared by microwave-assisted approach, (c) schematic illustration of the morphological evolution of flower-shaped microsphere precursors[46]

1.1.3 珊瑚状

珊瑚状NiCo2O4的制备方法主要为溶胶-凝胶法。溶胶-凝胶法过程简单、成本低且产物纯度高、均匀性好而被科研工作者广泛用于材料的制备。该方法将包含无机金属盐或者金属有机物的前驱体溶液转化为无机固态, 再通过热分解制备产物粉末[47,48,49]。制备过程中, 表面活性剂、溶剂、反应时间与温度是决定产物结构与形貌的主要因素[50]。Wu等[51]使用柠檬酸作为螯合配位体, H2O-DMF(N,N-二甲基甲酰胺)作为混合溶剂, 通过溶胶-凝胶法合成了珊瑚状NiCo2O4。产物作为超级电容器电极在质量负荷为5.6 mg/cm2下最大比容量可达217 F/g, 且600次充放电循环后容量保持率为96.3%。溶胶-凝胶法制得的纳米材料均匀性好, 化学计量比也可精确控制, 但也受到成本高、易团聚等因素的制约。

1.1.4 三维复合结构

三维复合结构因形貌多样、比表面积大而成为当今的研究热点, 其合成多采用模板法。该法易于调控材料的尺寸及形状, 是制备特殊形貌纳米材料最重要的方法之一。纳米碳材料比表面积大、导电性好、化学稳定性高, 目前被广泛用于模板法合成三维复合结构材料[52,53,54,55,56]。Wu等[57]首先以泡沫镍为模板, 通过化学气相沉积制备掺氮碳纳米管, 并形成三维交织网状结构。接着在掺氮碳纳米管上电沉积生长超细NiCo2O4纳米片(图4), 掺氮碳纳米管作为模板为离子和电子转移提供了优良的导电通道。该三维复合材料作为超级电容器电极表现出高比容量(电流密度1 A/g时比容量达1472 F/g)、良好的倍率性能以及杰出的循环稳定性(3000次循环后仅损失1%)。Nguyen等[58]在泡沫镍支持的石墨烯上电沉积尺寸为3~5 nm的NiCo2O4纳米颗粒。该复合结构具有巨大的比表面积和出色的结构稳定性, 在高电流密度7.5 A/g下比电容仍高达1950 F/g。

图4   (a)~(b) N-CNT/NiCo2O4 纳米片的TEM照片和 (c) N- CNT/NiCo2O4的制备过程示意图[57]

Fig. 4   (a, b) TEM images of the N-CNT/NiCo2O4 nanosheets, (c) schematic diagram of the fabrication process of N-CNT/ NiCo2O4[57]

除碳纳米材料外, 金属氧化物也常用作NiCo2O4三维复合结构合成的模板。金属氧化物(如Co3O4、NiO)与NiCo2O4复合而成的三维材料具有丰富的电活性位点、优良的电子收集率以及显著的协同效应[59]。Zhang等[60]以Co3O4纳米线阵列为模板, 电沉积合成尺寸小于10 nm的超细NiCo2O4纳米片(图5)。Co3O4与NiCo2O4纳米结构的复合展现出了优秀的协同效应。Co3O4纳米阵列为NiCo2O4的生长提供了模板, 避免了颗粒团聚, 并确保了离子的有效扩散; 而NiCo2O4的引入则降低了Co3O4的电荷转移电阻, 促进了活性材料中电子的快速传递。该复合材料作为超级电容器电极具有良好的电化学性能: 高电流密度20 A/g下比容量高达526.7 F/g(几乎是原Co3O4比容量的2.5倍)。

图5   Co3O4@NiCo2O4纳米复合物的制备过程示意图[60]

Fig. 5   Illustration of the fabrication process of Co3O4@NiCo2O4[60]

1.2 二维形貌

与三维纳米材料不同, 二维纳米材料是由纳米晶构成的单层或多层薄层结构材料, 其在两个维度上具有延伸性。该结构表面积大, 离子迁移路径短, 具有广阔的应用前景[61,62,63,64,65]。二维钴酸镍纳米材料的主要形貌为纳米片, 其合成方法包括电沉积、化学沉积等。

电沉积主要通过电解过程将电镀液中悬浮的微米或亚微米尺寸的颗粒沉积在电化学合成的固相基底上[66,67,68], 包括前驱体溶液的形成、纳米颗粒的共电沉积和热分解等过程[69]。Lou等[70]在泡沫镍的基底上利用电沉积合成了超细多孔NiCo2O4纳米片。该介孔结构有利于电极间电解质的迁移, 同时促进双电层间的充放电, 并使氧化还原反应快速发生。产物作为超级电容器电极在高电流密度(20 A/g)下依然展现出极高的比容量(1450 F/g)。Lu等[71]通过无模板电沉积法控制合成了厚度为20~40 nm且具有微孔结构的NiCo2O4纳米片(图6)。该纳米片在空气气氛、200 ℃下煅烧3 h后形貌与结构均未发生改变, 表明其层状的纳米结构具有较好的热稳定性。NiCo2O4纳米片独特的相连介孔结构可以加速电子和离子的渗透与扩散, 从而显著提升其电化学性能。电沉积法虽然工艺简单且产物纯度高, 但需要消耗大量电能, 在工业应用中受到限制。

图6   电沉积法制备的NiCo2O4纳米片在煅烧(a)~(b)前、(c)~(d)后的SEM照片; (e)NiCo2O4纳米片上电子与离子传递示意图[71]

Fig. 6   SEM images of NiCo2O4 nanosheets prepared by electrodeposition: (a, b) before and (c, d) after calcination, and (e) schematic illustration of the transportation of species on porous NiCo2O4 nanosheets[71]

化学沉积法作为一种常见的纳米薄膜材料制备方法, 通过控制水浴温度、pH、溶液浓度和反应时间等条件, 可以在基底表面合成不同形貌的纳米材料[72]。Zhang等[64]通过化学浴沉积法在不同的导电基底(泡沫镍、钛箔、不锈钢箔、柔性石墨纸)上合成了NiCo2O4纳米片。该结构比表面积可达112.6 m2/g, 孔径为2~5 nm。将该材料循环3000次后, 在低电流密度(8.5 mA/cm2)下损失量仅为6.7%, 而高电流密度(25 mA/cm2)下损失量为17.1%。Pu等[73]通过水热法和热处理制备了平均直径约为100 nm、厚度为25 nm的NiCo2O4六方纳米片, 并研究了热处理温度对形貌及电化学性能的影响。相较350 ℃而言, 热处理温度为300 ℃时所得产物的比表面积更大(67.08 m2/g)、孔径更小(8.32 nm), 因而其表现出更加优越的电化学性能。

1.3 一维形貌

一维纳米材料具有单分散性、多孔性、结构稳定性的特点而在近年吸引了广泛注意[74,75,76]。一维纳米材料通常指具有高长径比的形貌[77], 具体表现为纳米针、纳米线、纳米管等。目前制备一维纳米材料的方法包括液相法、水热法及静电纺丝法等。

1.3.1 纳米针

纳米针是最常见的一维纳米形貌之一, 采用液相法易得到纳米针形貌的材料。Zhang等[78]以泡沫镍为基底, 采用液相沉淀热分解法控制形貌, 合成了NiCo2O4纳米针。制备过程中, 反应条件对前驱体的形貌影响比较大: 沉淀剂尿素的加入量增加, 长径比也随之增大; 延长反应时间使NiCo2O4短纳米棒转变为纳米针, 通过热分解即可原位得到底部直径约100 nm、尖端直径3~5 nm的NiCo2O4纳米针。将这种结构的NiCo2O4应用于超级电容器, 电容器的容量和循环稳定性均显著提高, 可能是由于其比表面积大且一维结构有利于增大电极/电解液间的接触面积。

1.3.2 纳米线

纳米线的合成常采用液相沉积法。该方法通过成核、聚集、合并和颗粒长大等过程, 从过饱和溶液中析出固体沉淀, 以达到制备纳米材料的目的。固相析出过程中, 成核中心是颗粒聚集的基础, 而聚集颗粒的合并则为纳米结构的形成提供了保障[79,80]。Jiang等[81]以乙醇和聚乙二醇为混合溶剂, 草酸为沉淀剂, 通过持续搅拌液相获得前驱体。将前驱体在250 ℃、空气条件下煅烧3 h即可得到多孔NiCo2O4纳米线, 该纳米线由尺寸为3~6 nm的超细纳米颗粒组成, 比表面积为202.2 m2/g。多孔NiCo2O4纳米线应用于超级电容器时具有较高的比容量(电流密度为1 A/g时比电容高达743 F/g)、优秀的倍率性能(电流密度为40 A/g时容量保持率为78.6%)、良好的循环稳定性(3000次循环后仅下降6.2%)。

Shen等[82]采用表面活性剂辅助水热法并结合短时间热处理在碳布上合成了NiCo2O4纳米线阵列。该纳米线直径约150 nm, 长度可达几个微米, 由许多直径10~20 nm的纳米粒组成(图7)。Chen等[83]结合水热法和电化学沉积法制备了核壳结构的NiCo2O4纳米线。该纳米线对氧气析出反应具有良好的电催化性, 在电流密度10 mA/cm2下展现出高阳极电流、低起始电位, 且过电势仅为320 mV。

图7   碳基NiCo2O4纳米线阵列前驱体的(a)低倍和(b)高倍SEM照片; 碳基NiCo2O4纳米线阵列的(c)低倍和(d)高倍SEM照片; (e)碳基NiCo2O4纳米线阵列的合成示意图[81]

Fig. 7   SEM images of the NiCo2O4 precursor NWAs/carbon textiles composite: (a) low and (b) high magnification, SEM images of the NiCo2O4 NWAs/carbon textiles composite: (c) low and (d) high magnification, and (e) schematic illustration of the formation of NiCo2O4 NWAs/carbon textiles composite[81]

1.3.3 纳米管

相比于其他制备方法, 静电纺丝是一种简单、多功能且经济有效的制备纳米材料的方法[84,85]。在纳米材料的制备过程中, 前驱体浓度、溶液黏度、聚合物类型以及静电纺丝参数(外加电压、工作距离、进给速度)等因素会对纳米材料的形貌和尺寸分布产生影响[30]。Srinivasan等[86]使用静电纺丝法制备了多孔NiCo2O4纳米管。在制备过程中发现, 前驱体浓度与产物形貌的关系密切: 当前驱体与PVP浓度比分别为0.61:1, 0.44:1和0.87:1时, 可分别得到直径约100 nm、壁厚约33 nm的纳米管、纳米线和纳米带(图8)。其中NiCo2O4多孔纳米管具有较大的比表面积和空心一维纳米结构, 作为超级电容器, 在电流密度1 A/g时比容量可达1647 F/g。

图8   (a)~(b)NiCo2O4纳米管SEM照片, (c)NiCo2O4纳米管、纳米线、纳米环的制备过程示意图[86]

Fig. 8   (a, b) SEM images of the NiCo2O4 nanotubes and (c) schematic illustration of preparation of NiCo2O4 nanofibers, nanotubes and nanobelts[86]

静电纺丝法虽然操作简单、可连续生产, 但其对溶液浓度、电场强度、给料速度等要求也较高, 而水热法成本较低且反应条件易控制。Lou等[87]通过一步水热法制备了NiCo2O4分层四方微管, 并研究了反应时间对产物形貌的影响。反应初始阶段合成顶部为塔尖状的光滑四方棱柱(图9(a)); 反应时间延长到6 h, 棱柱表面开始形成一些小而细的纳米片(图9(b)); 随着水热反应过程的推进, 纳米片开始长大并固定层状外壳, 同时内层核开始从两端收缩(图9(c)); 反应结束时, 初始的固体棱柱完全转化为由纳米片构成的空心微管(图9(d))。

图9   不同反应时间得到NiCo2O4样品的TEM照片: (a) 4 h, (b) 6 h, (c) 10 h, (d) 12 h; (e) NiCo2O4分层四方微管制备过程示意图[87]

Fig. 9   Representative TEM images of the samples obtained after reaction for (a) 4 h, (b) 6 h, (c) 10 h, (d) 12 h and (e) their corresponding schematic illustration of the formation process for hierarchical NiCo2O4 tetragonal microtubes[87]

2 结论与展望

形貌对材料的性能有着重要的影响, 目前可采用不同的制备方法得到多种形貌的纳米NiCo2O4。一维纳米NiCo2O4主要通过液相法和静电纺丝法获得, 二维纳米NiCo2O4主要通过电沉积法与化学沉积法等方法获得, 而采用水热法、溶胶-凝胶法和模板法等通常可以制备出三维纳米NiCo2O4。三维结构的纳米NiCo2O4通常具有较大的比表面积与高密度缺陷, 在能源储存与转换领域有较大优势。另外, 将特殊结构的NiCo2O4纳米材料与碳纳米材料复合, 可极大地扩大材料的比表面积, 提高孔隙率, 增加电化学活性位点, 缩短电子与离子的传递路径, 显著提高材料的电化学性能。因此碳基NiCo2O4三维复合材料在未来具有重要的研究价值。总之, 采用合适的制备体系, 使之易于实现纳米粒子尺寸、形貌、有序排列等方面的调控是未来纳米NiCo2O4制备研究的重点。

参考文献

[1]WANG Q, LIU B, WANG X,et al.

Morphology evolution of urchin- like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells

. Journal of Materials Chemistry, 2012, 22(40): 21647-21653.

[本文引用: 1]    

[2]YUAN C, LI J, HOU L,et al.

Polymer-assisted synthesis of a 3D hierarchical porous network-like spinel NiCo2O4 framework towards high-performance electrochemical capacitors.

Journal of Materials Chemistry A, 2013, 1(37): 11145-11151.

[本文引用: 2]    

[3]HU L, WU L, LIAO M,et al.

Electrical transport properties of large, individual NiCo2O4 nanoplates

. Advanced Functional Materials, 2012, 22(5): 998-1004.

[本文引用: 1]    

[4]WU Z, ZHU Y, JI X.

NiCo2O4-based materials for electrochemical supercapacitors

.Journal of Materials Chemistry A, 2014, 2(36): 14759-14772.

[本文引用: 1]    

[5]QIAN L, GU L, YANG L,et al.

Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation

. Nanoscale, 2013, 5(16): 7388-7396.

[本文引用: 1]    

[6]ZHAN J, LU E, CAI M,et al.

Controlled synthesis and electrocatalytic performance of porous nickel cobaltite rods.

Journal of Inorganic Materials, 2017, 32(1): 11-17.

[本文引用: 1]    

[7]DING R, QI L, JIA M,et al.

Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation

. Nanoscale, 2014, 6(3): 1369-1376.

[本文引用: 1]    

[8]HAN L, YU X Y, LOU X W.

Formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni-Co-mixed oxide for enhanced oxygen evolution.

Advanced Materials, 2016, 28(23): 4601-4605.

[本文引用: 1]    

[9]GAO X, ZHANG H, LI Q,et al.

Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting.

Angewandte Chemie International Edition, 2016, 55(21): 6290-6294.

[本文引用: 1]    

[10]WANG J, FU Y, XU Y,et al.

Hierarchical NiCo2O4 hollow nanospheres as high efficient bi-functional catalysts for oxygen reduction and evolution reactions

. International Journal of Hydrogen Energy, 2016, 41(21): 8847-8854.

[本文引用: 1]    

[11]LI L, CHEAH Y, KO Y,et al.

The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties.

Journal of Materials Chemistry A, 2013, 1(36): 10935-10941.

[本文引用: 1]    

[12]LI J, XIONG S, LIU Y,et al.

High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batterie

. ACS Appl. Mater. Interfaces, 2013, 5(3): 981-988.

[本文引用: 1]    

[13]MA L, SHEN X, HU Z,et al.

High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/ reduced graphene oxide composites

. Chemical Engineering Journal, 2015, 262(15): 980-988.

[本文引用: 1]    

[14]GAO Z, YANG W, WANG J,et al.

Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties.

Nano Energy, 2015, 13: 306-317.

[本文引用: 1]    

[15]YU L, GUAN B, XIAO W, et al.

Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors Formation of yolk-shelled Ni-Co mixed oxide nanoprisms with enhanced electrochemical performance for hybrid supercapacitors and lithium ion batteries

. Advanced Energy Materials, 2015, 5(21): 1500981-1-7.

[本文引用: 1]    

[16]WANG N, ZHAO P, ZHANG Q,et al.

Monodisperse nickel/cobalt oxide composite hollow spheres with mesoporous shell for hybrid supercapacitor: a facile fabrication and excellent electrochemical performance

. Composites Part B Engineering, 2017, 113(15): 144-151.

[本文引用: 1]    

[17]GUAN C, LIU X, REN W, et al.

Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis

. Advanced Energy Materials, 2017, 7(8): 1602391-1-8.

[本文引用: 1]    

[18]WEN R J, YANG Z H, FAN X,et al.

Electrochemical performances of ZnO with different morphology as anodic materials for Ni/Zn secondary batteries

. Electrochimica Acta, 2012, 83(12): 376-382.

[本文引用: 1]    

[19]TONG T, SHEREEF A, WU J,et al.

Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria

. Environmental Science & Technology, 2013, 47(21): 12486-12495.

[本文引用: 1]    

[20]ZHANG Q, UCHAKER E, CANDELARIA S L,et al.

Nanomaterials for energy conversion and storage

. Chemical Society Reviews, 2013, 42(7): 3127-3171.

[本文引用: 1]    

[21]GHOSH S K, PAL T.

Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications

. Chemical Reviews, 2007, 107(11): 4797-4862.

[本文引用: 1]    

[22]SARDAR R, FUNSTON A M, MULVANEY P,et al.

Gold nanoparticles: past, present, and future.

Langmuir, 2009, 25(24): 13840-13851.

[本文引用: 1]    

[23]YUAN L, WAN C, YE X,et al.

Facial synthesis of silver- incorporated conductive polypyrrole submicron spheres for supercapacitors

. Electrochimica Acta, 2016, 213(20): 115-123.

[本文引用: 1]    

[24]KIM J, LEE S B, LEE S K,et al.

Magnetic thermal dissipations of FeCo hollow fibers filled in composite sheets under alternating magnetic field.

Applied Surface Science, 2017, 415(1): 114-118.

[本文引用: 1]    

[25]JIN C, LU F, CAO X,et al.

Facile synthesis and excellent electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen reduction and evolution reaction

. Journal of Materials Chemistry A, 2013, 1(39): 12170-12177.

[本文引用: 1]    

[26]PENG Z, JIA D, AL-ENIZI A M, et al.

From water oxidation to reduction: homologous Ni-Co based nanowires as complementary water splitting electrocatalysts

. Advanced Energy Materials, 2015, 5(9): 1402031-1-7.

[本文引用: 1]    

[27]CHEN H, JIANG J, ZHANG L,et al.

Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors

. Journal of Power Sources, 2014, 248(4): 28-36.

[本文引用: 1]    

[28]WANG Q, WANG X, XU J,et al.

Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes

. Nano Energy, 2014, 8(9): 44-51.

[本文引用: 1]    

[29]ZHOU J, HUANG Y, CAO X,et al.

Two-dimensional NiCo2O4 nanosheet-coated three-dimensional graphene networks for high- rate, long-cycle-life supercapacitors

. Nanoscale, 2015, 7(16): 7035-7039.

[本文引用: 1]    

[30]CHEN D, WANG Q, WANG R,et al.

Ternary oxide nanostructured materials for supercapacitors: a review

. Journal of Materials Chemistry A, 2015, 3(19): 10158-10173.

[本文引用: 2]    

[31]ZHANG L, WU H B, LOU X W.

Iron-oxide-based advanced anode materials for lithium-ion batteries

. Advanced Energy Materials, 2014, 4(4): 1300958-1-11.

[本文引用: 1]    

[32]ZHAO Q, MA L, ZHANG Q,et al.

SnO2-based nanomaterials: synthesis and application in lithium-ion batteries and supercapacitors

. Journal of Nanomaterials, 2015, 2015(6): 6-21.

[本文引用: 1]    

[33]WANG C, ZHOU E, DENG X,et al.

Three-dimensionally porous NiCo2O4 nanoneedle arrays for high performance supercapacitor

. Science of Advanced Materials, 2016, 8(6): 1298-1304.

[本文引用: 1]    

[34]ZOU R, XU K, WANG T,et al.

Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors

. Journal of Materials Chemistry A, 2013, 1(30): 8560-8566.

[本文引用: 3]    

[35]LI X, JIANG L, ZHOU C,et al.

Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors

. NPG Asia Materials, 2015, 7(3): 165-173.

[本文引用: 1]    

[36]LIU X, DAN X, ZHANG D,et al.

Superior performance of 3D Co-Ni bimetallic oxides for catalytic degradation of organic dye: investigation on the effect of catalyst morphology and catalytic mechanism

. Applied Catalysis B: Environmental, 2016, 186: 193-203.

[本文引用: 1]    

[37]HSU C T, HU C C.

Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors

.Journal of Power Sources, 2013, 242(22): 662-671.

[本文引用: 1]    

[38]AN C, WANG Y, HUANG Y,et al.

Novel three-dimensional NiCo2O4 hierarchitectures: solvothermal synthesis and electrochemical properties

. CrystEngComm, 2013, 16(3): 385-392.

[本文引用: 1]    

[39]KONG L B, LU C, LIU M C,et al.

Effect of surfactant on the morphology and capacitive performance of porous NiCo2O4

. Journal of Solid State Electrochemistry, 2013, 17(5): 1463-1471.

[本文引用: 1]    

[40]ZHANG Y, MA M, YANG J,et al.

Selective synthesis of hierarchical mesoporous spinel NiCo2O4 for high-performance supercapacitors

. Nanoscale, 2014, 6(8): 4303-4308.

[本文引用: 1]    

[41]WANG X, WU X L, GUO Y G,et al.

Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres

. Advanced Functional Materials, 2010, 20(10): 1680-1686.

[本文引用: 1]    

[42]LEE D, KIM B, CHEN Z.

One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst

.Journal of Materials Chemistry A, 2013, 1(15): 4754-4762.

[本文引用: 1]    

[43]ZHANG J, LIU F, CHENG J P,et al.

Binary nickel-cobalt oxides electrode materials for high-performance supercapacitors: influence of its composition and porous nature.

ACS Applied Materials & Interfaces, 2015, 7(32): 17630-17640.

[本文引用: 3]    

[44]TSENG C C, LEE J L, LIU Y M,et al.

Microwave-assisted hydrothermal synthesis of spinel nickel cobaltite and application for supercapacitors.

Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(3): 415-419.

[本文引用: 1]    

[45]HU C C, HSU C T, CHANG K H,et al.

Microwave-assisted hydrothermal annealing of binary Ni-Co oxy-hydroxides for asymmetric supercapacitors.

Journal of Power Sources, 2013, 238(28): 180-189.

[本文引用: 1]    

[46]LEI Y, LI J, WANG Y,et al.

Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor

. ACS Applied Materials & Interfaces, 2014, 6(3): 1773-1780.

[本文引用: 3]    

[47]HENCH L L, WEST J K.

The Sol-Gel process

.Chemical Reviews, 1990, 90(1): 33-72.

[本文引用: 1]    

[48]NIEDERBERGER M.

Nonaqueous Sol-Gel routes to metal oxide nanoparticles

.Accounts of Chemical Research, 2007, 38(49): 793-800.

[本文引用: 1]    

[49]LIVAGE J, HENRY M, SANCHEZ C.

Sol-Gel chemistry of transition metal oxides

.Progress in Solid State Chemistry, 1988, 18(4): 259-341.

[本文引用: 1]    

[50]SUI R, YOUNG J L, BERLINGUETTE C P.

Sol-Gel synthesis of linear Sn-doped TiO2 nanostructures

.Journal of Materials Chemistry, 2009, 20(3): 498-503.

[本文引用: 1]    

[51]YE Q W, XIANG Y C, PING T J,et al.

Sol-Gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors

. Electrochimica Acta, 2011, 56(22): 7517-7522.

[本文引用: 1]    

[52]LIU W, LU C, LIANG K,et al.

A three dimensional vertically aligned multiwall carbon nanotube/NiCo2O4 core/shell structure for novel high-performance supercapacitors.

Journal of Materials Chemistry A, 2014, 2(14): 5100-5107.

[本文引用: 1]    

[53]CAI F, KANG Y, CHEN H,et al.

Hierarchical CNT@NiCo2O4 core-shell hybrid nanostructure for high-performance supercapacitors

. Journal of Materials Chemistry A, 2014, 2(29): 11509-11515.

[本文引用: 1]    

[54]WEI Y, CHEN S, SU D,et al.

3D mesoporous hybrid NiCo2O4@graphene nanoarchitectures as electrode materials for supercapacitors with enhanced performances

. Journal of Materials Chemistry A, 2014, 2(21): 8103-8109.

[本文引用: 1]    

[55]WANG L, WANG X, XIAO X,et al.

Reduced graphene oxide/ nickel cobaltite nanoflake composites for high specific capacitance supercapacitors.

Electrochimica Acta, 2013, 111(6): 937-945.

[本文引用: 1]    

[56]SUN S, WANG S, LI S,et al.

Asymmetric supercapacitors based on NiCo2O4/three dimensional graphene composite and three dimensional graphene with high energy density

. Journal of Materials Chemistry A, 2016, 4(47): 1-8.

[本文引用: 1]    

[57]WU J, GUO P, MI R,et al.

Ultrathin NiCo2O4 nanosheets grown on three-dimensional interwoven nitrogen-doped carbon nanotubes as binder-free electrodes for high-performance supercapacitors

. Journal of Materials Chemistry A, 2015, 3(29): 15331-15338.

[本文引用: 3]    

[58]NGUYEN V H, SHIM J J.

Three-dimensional nickel foam/graphene/ NiCo2O4 as high-performance electrodes for supercapacitors

.Journal of Power Sources, 2015, 273(1): 110-117.

[本文引用: 1]    

[59]YU L, ZHANG G, YUAN C,et al.

Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high- performance supercapacitor electrodes

. Chemical Communications, 2013, 49(2): 137-139.

[本文引用: 1]    

[60]ZHANG G, WANG T, YU X,et al.

Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors

. Nano Energy, 2013, 2(5): 586-594.

[本文引用: 3]    

[61]RAN L, DUAY J, SANG B L.

Heterogeneous nanostructured electrode materials for electrochemical energy storage

.Chemical Communications, 2011, 47(5): 1384-1404.

[本文引用: 1]    

[62]DENG F, YU L, CHENG G,et al.

Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors.

Journal of Power Sources, 2014, 251(2): 202-207.

[本文引用: 1]    

[63]DU J, ZHOU G, ZHANG H,et al.

Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors

. ACS Applied Materials & Interfaces, 2013, 5(15): 7405-7409.

[本文引用: 1]    

[64]ZHANG G, LOU X W.

General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high- performance electrodes for supercapacitors

.Advanced Materials, 2013, 25(7): 976-979.

[本文引用: 2]    

[65]ZHANG G, WEN D L X.

Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors

. Scientific Reports, 2013, 3(3): 1470-1-6.

[本文引用: 1]    

[66]MUSIANI M.

Electrodeposition of composites: an expanding subject in electrochemical materials science

.Electrochimica Acta, 2000, 45(20): 3397-3402.

[本文引用: 1]    

[67]PEI A, ZHENG G, SHI F,et al.

Nanoscale nucleation and growth of electrodeposited lithium metal

. Nano Letters, 2017, 17(2): 1132-1139.

[本文引用: 1]    

[68]TU Z, ZACHMAN M J, CHOUDHURY S, et al.

Nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes

. Advanced Energy Materials, 2017, 7(8): 1602367-1-9.

[本文引用: 1]    

[69]TORABINEJAD V, ALIOFKHAZRAEI M, ASSAREH S,et al.

Electrodeposition of Ni-Fe alloys, composites, and nano coatings-a review

. Journal of Alloys & Compounds, 2016, 691: 841-859.

[本文引用: 1]    

[70]YUAN C, LI J, HOU L,et al.

Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors

. Advanced Functional Materials, 2012, 22(21): 4592-4597.

[本文引用: 1]    

[71]LU X, HUANG X, XIE S,et al.

Controllable synthesis of porous nickel-cobalt oxide nanosheets for supercapacitors.

Journal of Materials Chemistry, 2012, 22(26): 13357-13364.

[本文引用: 3]    

[72]PAWAR S M, PAWAR B S, KIM J H,et al.

Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films

. Current Applied Physics, 2011, 11(2): 117-161.

[本文引用: 1]    

[73]PU J, WANG J, JIN X,et al.

Porous hexagonal NiCo2O4 nanoplates as electrode materials for supercapacitors.

Electrochimica Acta, 2013, 106(9): 226-234.

[本文引用: 1]    

[74]WEI Q, XIONG F, TAN S, et al.

Porous one-dimensional nanomaterials: design Porous one-dimensional nanomaterials: design, fabrication and applications in electrochemical energy storage

. Advanced Materials, 2017, 29(20): 1602300-1-39.

[本文引用: 1]    

[75]XIAO F X, MIAO J, TAO H B,et al.

One-dimensional hybrid nanostructures for heterogeneous photocatalysis and photoelectrocatalysis

. Small, 2015, 11(18): 2115-2131.

[本文引用: 1]    

[76]ZHAN J, CAI M, ZHANG C,et al.

Synthesis of mesoporous NiCo2O4 fibers and their electrocatalytic activity on direct oxidation of ethanol in alkaline media

. Electrochimica Acta, 2015, 154: 70-76.

[本文引用: 1]    

[77]CHEN J S, LOU X W.

SnO2-based nanomaterials: synthesis and application in lithium-ion batteries

.Small, 2013, 9(11): 1877-1893.

[本文引用: 1]    

[78]ZHANG G Q, WU H B, HOSTER H E,et al.

Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors

. Energy & Environmental Science, 2012, 5(11): 9453-9456.

[本文引用: 1]    

[79]SU C.

Environmental implications and applications of engineered nanoscale magnetite and its hybrid nanocomposites: a review of recent literature

.Journal of Hazardous Materials, 2016, 322(Pt A): 48-84.

[本文引用: 1]    

[80]DUBAL D P, GOMEZ-ROMERO P, SANKAPAL B R,et al.

Nickel cobaltite as an emerging material for supercapacitors: an overview.

Nano Energy, 2015, 11: 377-399.

[本文引用: 1]    

[81]JIANG H, MA J, LI C.

Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors

.Chemical Communications, 2012, 48(37): 4465-4467.

[本文引用: 3]    

[82]SHEN L, CHE Q, LI H,et al.

Metal oxides: mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage

. Advanced Functional Materials, 2014, 24(18): 2736-2736.

[本文引用: 1]    

[83]CHEN R, WANG H Y, MIAO J,et al.

A flexible high-performance oxygen evolution electrode with three-dimensional NiCo2O4 core-shell nanowires

. Nano Energy, 2015, 1: 333-340.

[本文引用: 1]    

[84]JI L, LIN Z, GUO B,et al.

Assembly of carbon-SnO2 core-sheath composite nanofibers for superior lithium storage

. Chemistry-A European Journal, 2010, 16(38): 11543-11548.

[本文引用: 1]    

[85]LI L, PENG S, CHEAH Y L,et al.

Electrospun eggroll-like CaSnO3 nanotubes with high lithium storage performance

. Nanoscale, 2013, 5(1): 134-138.

[本文引用: 1]    

[86]LI L, PENG S, CHEAH Y,et al.

Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors

. Chemistry, 2013, 19(19): 5892-5898.

[本文引用: 3]    

[87]MA F X, YU L, XU C Y,et al.

Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties

. Energy & Environmental Science, 2016, 9(3): 862-866.

[本文引用: 3]    

相关知识

不同形貌纳米CuM
一文了解不同形貌纳米勃姆石的制备方法
纳米农药的研究进展及发展趋势
硅藻土微观形貌观.docx
不同粒径大小的金纳米粒子
铂纳米花的绿色合成以及电催化性能的研究
一种纳米花状Ni
钠电池材料检测之利用扫描电镜SEM对正极材料微观形貌观察检测
上海硼矩新材料科技取得基于深度学习的纳米材料微观形貌视觉识别方法专利
基于DNA“纳米花”的caspase

网址: 不同形貌纳米NiCo2O4的研究进展 https://m.huajiangbk.com/newsview1898292.html

所属分类:花卉
上一篇: 南汇东滩海三棱藨草群落的生态演替
下一篇: 生物炭在缓解互花米草化感胁迫和调