首页 > 分享 > 燃料电池电动汽车动力系统能量管理策略研究进展

燃料电池电动汽车动力系统能量管理策略研究进展

摘要: 燃料电池汽车以“高效、清洁、零污染”的优点被认为是未来新能源汽车的发展方向。目前全球主要汽车公司大都已经完成了燃料电池汽车的基本性能研发,中国的燃料电池汽车技术研发也取得重大进展。本文分析了国内外燃料电池乘用车、客车及物流车的动力系统应用现状和结构特性,对当前燃料电池汽车动力系统能量管理策略进行了综述,并对未来燃料电池汽车动力系统能量管理的发展进行了一定的探讨。

Abstract: Fuel cell vehicles are considered to be the development direction of new energy vehicles in the future due to their advantages of "high efficiency, cleanliness, and zero emission." At present, most of the major automobile companies in the world have completed the basic performance research and development phase of fuel cell vehicles, and China's fuel cell vehicle technology research and development has also made significant progress. This paper analyzes the application status and characteristics of power system of domestic and foreign fuel cell passenger cars, buses and logistics vehicles. At the same time, the energy management strategies adopted by current fuel cell vehicles are reviewed, and the future development of fuel cell electric vehicles is discussed.

表  1   国内外燃料电池乘用车主要参数和性能[5-8]

汽车品牌丰田Mirai本田Clarity现代NEXO上汽荣威950 上市年份2014201620192015车重/kg1 8501 8902 2902 094最高车速/(km/h)175166179160百公里加速时间/s9.68.99.5—燃料电池功率/kW11410312036冷启动性能/℃−30−30−30−20电池电量/kWh1.6171.9—电机功率/kW113130120110续驶里程/km502750596350

表  2   国外燃料电池公交车动力系统分析[13-16]

客车厂家美国New Flyer欧洲Van hool丰田Sora韩国现代 车长/m161210.525—燃料电池功率/kW2×851202×1142×95燃料电池厂家BallardUS hybrid丰田现代动力电池容量/kWh—2123549电机功率/kW210—2×113240续驶里程/km483—200450

表  3   中国燃料电池公交车动力系统分析[1]

城市车长/m燃料电池功率/kW电机额定(峰值功率)/kW整车供应商动力系统供应商 张家口1260100(200)宇通亿华通1030100(150)福田武汉8.54080(150)开沃新能源泰歌/雄韬氢雄郑州1250100(200)宇通重塑大同10.545100(200)中通雄韬氢雄聊城93260(155)中通重塑上海1260—上海申沃上汽北京1260100(150)福田亿华通佛山1160/88100(200)佛山飞驰广东国鸿/亿华通云浮1184100(200)佛山飞驰广东国鸿/亿华通张家港10.550/60100(200)宇通/苏州金龙亿华通/重塑如皋10.53080(160)青年汽车南通百应能源盐城123080(140)南京金龙江苏兴邦能源成都94790(150)蜀都东方电气

表  4   国内外主要燃料电池物流车参数[18 − 22]

品牌总质量/kg燃料电池功率
/kW(供应厂商)电机额定
(峰值功率)/kW电池电量/kWh续航里程/km 中通7 98530(亿华通)6061.82530福田
欧马8 27531.36050.37410东风7 51030(重塑)60(120)—360佛山
飞驰3 5003260(120)42300一汽
解放8 00032120(164)24400潍柴
亚星4 495150/20460(150)26—江铃
重卡33 07095(上海杰宁)150(250)—400~500大禹8 250120/16360(120)——Toyota40 000114×2(Toyota)—12320 Daimler7 50075(Daimler)13513.8~40300 Hyundai18 00095×2(Hyundai)350—400Cummins—90(Cummins)—100240~400

表  5   燃料电池汽车动力系统结构特点及代表车型[26]

动力系统结构特点代表车型 FC+B 工况适应性好丰田mirai、本田clarity、现代nexo、荣威950FC+S 加速爬坡响应快,启动性能好,但是功率密度小,并具有自放电特性本田FCV-3、马自达FCEVFC+B+S 改善了回收制动能量的效果,但结构相对复杂,控制难度大本田FCHEV-4 [1] 新能源汽车国家大数据联盟. 全国氢燃料电池汽车数据分析报告[EB/OL]. (2020-03-17)[2020-04-18].http://www.ndanev.com/2020/03/17/01-38/. [2] 孔德洋, 唐闻翀, 柳文灿, 等. 燃料电池汽车能耗、排放与经济性评估[J]. 同济大学学报(自然科学版), 2018, 46(4): 498 − 503+523. [3] 刘海利, 宋利军, 梁欣. 车用氢燃料电池技术现状及发展方向[J]. 辽宁化工, 2019, 48(10): 1005 − 1008. doi: 10.3969/j.issn.1004-0935.2019.10.020 [4] 陈广. 国内外燃料电池汽车的发展前景及市场状况[J]. 企业改革与管理, 2018(11): 219 − 220. [5]

TOYOTA.Toyota users in the future with launch of "Mirai" fuel cell sedan[EB/OL].(2014-11-18)[2020-02-9]. https://global.toyota/en/newsroom/toyota/22740159.html#.

[6] HONDA. Honda新款燃料电池汽车“CLARITY FUEL CELL”上市续航里程达750公里的零排放汽[EB/OL].(2010-03-14)[2020-01-18].http://www.honda.com.cn/news/detail.php?id=20160314. [7]

HYUNDAI. NEXO: The Next-Generation Fuel Cell Vehicle from Hyundai[EB/OL]. (2018-01-09)[2020-01-18].https://www.hyundai.com/worldwide/en/company/news/news-room/news/NEXO:%20The%20Next-Generation%20Fuel%20Cell%20Vehicle%20from%20Hyundai-0000015682.

[8] 史宝华. 中国氢燃料电池汽车与国际先进水平有多大差距[EB/OL].(2019-10-04)[2020-01-14]. https://xueqiu.com/7901138929/133638013. [9] 能链. 全球第一!美国燃料电池汽车累计销售6547辆, 中国如何[EB/OL]. (2010-05-15)[ 2020-01-18].http://www.trendbank.net/detail/9130/1/34. [10] 王菊, 朱心怡. 国内外燃料电池汽车示范与应用情况综述[J]. 太阳能, 2017(8): 31 − 34. doi: 10.3969/j.issn.1003-0417.2017.08.009 [11]

ADRIAN PADEANU. Toyota sora fuel cell bus to debut in Tokyo[EB/OL]. (2017-10-22)[2020-01-18]. https://insideevs.com/news/336068/toyota-sora-fuel-cell-bus-to-debut-in-tokyo/.

[12]

SUSTAINABLE. Home/fuel cell/Hyundai, another step on hydrogen. A fuel cell police bus delivered in Korea[EB/OL]. (2019-11-07)[2020-01-18]. https://www.sustainable-bus.com/fuel-cell/hyundai-another-step-on-hydrogen-a-fuel-cell-police-bus-delivered-in-korea/.

[13]

NEW FLYER. Xcelsior CHARGE H2TM[EB/OL]. (2019-10-04)[2020-01-18].https://www.newflyer.com/buses/xcelsior-chargeh2/.

[14]

NREL.U.S. Fuel cell bus projects[EB/OL].(2019-05-29)[2020-01-18].https://search4.nrel.gov/texis/search/?pr=metanrel&query=fuel+cell+city+bus?.

[15] TOYOTA.丰田开始销售燃料电池巴士“SORA”[EB/OL].(2018-03-29)[2020-01-18].http://www.toyota.com.cn/mobile/mediacenter/show.php?newsid=5065. [16] 燃料电池客车亮相百人会, 宇通领衔客车产业“氢”时代[J]. 城市公共交通, 2019(2): 82 − 83. [17] 任诗发. 2018年我国氢燃料电池车盘点[J]. 汽车与配件, 2019(6): 29 − 31. doi: 10.3969/j.issn.1006-0162.2019.06.004 [18]

GREEN CAR CONGRESS. Daimler trucks’fuso unveils fuel-cell light-duty truckconcept and production heavy-duty Super Great truck with L2 automation[EB/OL]. (2010-10-25)[ 2020-01-18]. https://www.greencarcongress.com/2019/10/20191025-fuso.html.

[19]

最高180 kW!康明斯氢燃料电池重卡发布 [EB/OL]. (2019-11-01)[2020-01-18]. http://chuneng.ne21.com/show-15061.html.

[20]

CARRIE H.Toyota reveals an improved fuel cell truck[EB/OL]. (2019-04-24)[ 2020-01-18]. https://www.electrive.com/2019/04/24/toyota-reveals-an-improved-fuel-cell-truck/ (2019-04-24).

[21] 现代Xcient FuelCell欧洲开跑, 燃料电池卡车的春天来了?[EB/OL]].(2020-03-06)[2020-01-18]. https://new.qq.com/omn/20200306/20200306A0PSF300. [22] 蒋婷婷, 盘点目前我国的氢燃料电池物流车[EB/OL]. (2019-07-11)[2020-01-18]. http://www.evpartner.com/news/153/detail-46221.html. [23] 曹建国, 廖然, 杨利花. 燃料电池电动汽车发展现状与前景[J]. 新材料产业, 2015(4): 58 − 63. doi: 10.3969/j.issn.1008-892X.2015.04.012 [24] 拉里. 亿华通研发大功率氢燃料电池发动机额定功率超100kW[EB/OL]. (2019-09-12)[ 2020-01-18]. http://www.techweb.com.cn/smarttraveling/2019-09-12/2754272.shtml [25] 氢云链.工信部11批推荐目录发布, 江铃重汽携13款燃料电池汽车上榜[EB/OL].(2019-12-10)[2020-01-18].https://auto.gasgoo.com/a/70144683.html. [26] 陈湮佳. 燃料电池复合能源系统及能量管理发展综述[J]. 机电一体化, 2019, 25(Z1): 3 − 10+28. [27] 文佩敏, 宋珂, 章桐. 基于庞特里亚金极小值原理的燃料电池汽车“恒温器”能量管理策略[J]. 机电一体化, 2017, 23(12): 7 − 12. [28]

GENG C, JIN X F, ZHANG X. Simulation research on a novel control strategy for fuel cell extended-range vehicles[J]. International Journal of Hydrogen Energy, 2019, 44(1): 408 − 420. doi: 10.1016/j.ijhydene.2018.04.038

[29] 贠海涛, 谭建荣, 赵玉兰. 燃料电池混合动力系统的功率平衡控制[J]. 浙江大学学报(工学版), 2015, 49(3): 488 − 496+504. [30]

WANG Y J, SUN Z D, CHEN Z H. Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine[J]. Applied Energy, 2019, 254: 113707. doi: 10.1016/j.apenergy.2019.113707

[31]

XIE C J, XU X Y, PIOTRBUJLO, et al. Fuel cell and lithium iron phosphate battery hybrid powertrain with an ultracapacitor bank using direct parallel structure[J]. Journal of Power Sources, 2015, 279: 487 − 494. doi: 10.1016/j.jpowsour.2015.01.029

[32] 王哲, 谢怡, 孙维, 等. 燃料电池客车动力系统建模与能量管理策略研究[J]. 同济大学学报(自然科学版), 2019, 47(1): 97 − 103+123. [33]

CHEN J, XU C F, WU C S, et al. Adaptive fuzzy logic control of fuel-cell-battery hybrid systems for electric vehicles[J]. IEEE Transactions on Industrial Informatics, 2018, 14(1): 292 − 300. doi: 10.1109/TII.2016.2618886

[34] 徐陈锋. 基于自适应模糊策略的燃料电池车混合动力系统控制[D]. 杭州: 浙江大学, 2017. [35]

DIMA FARES, RIADCHEDID, SAMIKARAKI, et al. Optimal power allocation for a FCHV based on linear programming and PID controller[J]. International Journal of Hydrogen Energy, 2014, 39(36): 21724 − 21738. doi: 10.1016/j.ijhydene.2014.09.020

[36]

HU Z Y, LI J Q, XU L F, et al. Multi-objective energy management optimization and parameter sizing for proton exchange membrane hybrid fuel cell vehicles[J]. Energy Conversion and Management, 2016, 129: 108 − 121. doi: 10.1016/j.enconman.2016.09.082

[37] 宋珂, 张涛, 牛文旭, 等. 燃料电池汽车能量管理动态规划算法的误差累积问题及解决方法[J]. 汽车工程, 2017, 39(3): 249 − 255. [38]

ZHOU W, YANG L, CAI Y S, et al. Dynamic programming for new energy vehicles based on their work modes Part II: Fuel cell electric vehicles[J]. Journal of Power Sources, 2018, 407: 92 − 104. doi: 10.1016/j.jpowsour.2018.10.048

[39] 张炳力, 代康伟, 赵韩, 等. 基于随机动态规划的燃料电池城市客车能量管理策略优化[J]. 系统仿真学报, 2008, 20(17): 4664 − 4667. [40]

THOMAS P.FLETCHER, Optimal energy management strategy for a fuel cell hybrid electric vehicle[D]. England: Loughborough University, 2017.

[41]

HU Xiaosong, NIKOLCEMURGOVSKI, LARS MARDHJOHANNESSON, et al. Optimal dimensioning and power management of a fuel cell/battery hybrid bus via convex programming[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(1): 457 − 468. doi: 10.1109/TMECH.2014.2336264

[42]

LAURATRIBIOLI, RAFFAELLOCOZZOLINO, DANIELECHIAPPINI, et al. Energy management of a plug-in fuel cell/battery hybrid vehicle with on-board fuel processing[J]. Applied Energy, 2016, 184: 140 − 154. doi: 10.1016/j.apenergy.2016.10.015

[43]

JIANG H L, XU L F, LI J Q, et al. Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms[J]. Energy, 2019, 177: 386 − 396. doi: 10.1016/j.energy.2019.04.110

[44] 王哲, 谢怡, 臧鹏飞, 等. 基于极小值原理的燃料电池客车能量管理策略[J]. 吉林大学学报(工学版), 2020, 50(1): 36 − 43. [45]

LI H, ALEXANDRERAVEY, ABDOULN'DIAYE, et al. A novel equivalent consumption minimization strategy for hybrid electric vehicle powered by fuel cell, battery and supercapacitor[J]. Journal of Power Sources, 2018, 395: 262 − 270. doi: 10.1016/j.jpowsour.2018.05.078

[46]

RICHARD T. MEYER, RAYMOND A. DECARLO, PETER H. MECKL, et al Hybrid model predictive power management of a fuel cell-battery vehicle[J]. Asian Journal of Control, 2013, 15(2): 363 − 379. doi: 10.1002/asjc.553

[47]

YANG Z, ALEXANDRE R, MARIE-CECILE P. Multi-mode predictive energy management for fuel cell hybrid electric vehicles using markov driving pattern recognizer[J]. Applied Energy, 2020, 258: 114057.

[48]

HU X S, ZOU C F, TANG X L, et al. Cost-optimal energy management of hybrid electric vehicles using fuel cell/battery health-aware predictive control[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 382 − 392.

[49]

PEREIRA D F, LOPES F D, WATANABE E H. Nonlinear model predictive control for the energy management of fuel cell hybrid electric vehicles in real-time[EB/OL]. (2020-03-18)[2020-06-08]. https://xplorestaging.ieee.org/document/9040637?denied=.

[50] 赵治国, 沈沛鸿, 郏怡颖, 等. 燃料电池轿车模型预测实时优化控制[J]. 同济大学学报(自然科学版), 2018, 46(5): 648 − 657. [51]

YUAN J N, YANG L, CHEN Q. Intelligent energy management strategy based on hierarchical approximate global optimization for plug-in fuel cell hybrid electric vehicles[J]. International Journal of Hydrogen Energy, 2018, 43(16): 8063 − 8078. doi: 10.1016/j.ijhydene.2018.03.033

[52]

LI T Y, HUANG L T, LIU H Y. Energy management and economic analysis for a fuel cell supercapacitorexcavator[J]. Energy, 2019, 172: 840 − 851. doi: 10.1016/j.energy.2019.02.016

相关知识

充满一次电可跑2000公里 超高能量密度电池指日可待
关于燃油汽车和电动汽车的工作效率问题
明日之花,微生物燃料电池
国内外防止外来物种入侵管理策略研究进展.PDF
应用于高寒地区的电动汽车动力电池系统热管理技术研究
盘点电动汽车和传统燃油车驾驶感受的六大区别
唐山丨奖励燃料电池汽车推广 市财政按照国家奖励标准给予一定比例配套奖励
电动汽车和传统汽车在安全方面有哪些共性?又有哪些本质的不同?
家庭能量管理系统用电与电能调度优化策略研究
分析

网址: 燃料电池电动汽车动力系统能量管理策略研究进展 https://m.huajiangbk.com/newsview1947203.html

所属分类:花卉
上一篇: 轴流压气机内部流动失稳及其被动控
下一篇: 费用与成本自定义权限策略示例