首页 > 分享 > 中国水产养殖装备发展现状

中国水产养殖装备发展现状

摘要:水产养殖装备是高效发展现代水产养殖,促进水产养殖产业结构改革的重要技术支撑。基于养殖装备、信息技术和自动控制等多学科协同发力的智慧水产养殖模式已成为现代渔业高质量发展的新趋势与重要抓手,这也对水产养殖现有装备及其相关技术提出了更高的智能化要求。本文梳理了池塘、工厂化、网箱、筏式和底播养殖等5种主要养殖方式装备发展现状,从数字化和智能化角度分析了环境监测、对象感知、饲料投喂、分级计数等养殖环节中常用装备的研究进展,指出了制约我国水产养殖智能装备与技术发展的关键问题,提出了“机械化、自动化、智能化”的水产养殖装备与技术发展的新思路,旨在实现我国从水产养殖大国向水产养殖强国的历史转变。

关键词:水产养殖 / 装备 / 机械化 / 自动化 / 智能化

Abstract:Aquaculture equipment is an important technical support for the efficient development of modern aquaculture and the promotion of structural reform in the aquaculture industry. The intelligent aquaculture model based on the collaborative efforts of multiple disciplines such as aquaculture equipment, information technology, and automatic control, has become a new trend and an important lever for the high-quality development of modern fisheries, which also puts forward higher intelligent requirements for the existing equipment and related technologies of aquaculture. This article summarizes the current development status of five main aquaculture methods and equipment, including pond, factory, cage, raft, and bottom sowing aquaculture. From the perspectives of digitization and intelligence, it analyzes the research progress of commonly used equipment in aquaculture processes such as environmental monitoring, object perception, feeding, and graded counting. It points out the key issues that restrict the development of intelligent equipment and technology in aquaculture in China, A new concept of "mechanization, automation, and intelligence" for the development of aquaculture equipment and technology has been proposed, aiming to achieve the historical transformation of China from a major aquaculture country to a strong aquaculture country.

图 1 养殖对象信息感知技术框图

Figure 1. Aquaculture objects intelligent sensing technology framework

表 1 环境监测装备产业应用现状

Table 1. The current application status of environmental monitoring equipment industry

系统类型
type典型代表
typical representative获取数据
data procurement
应用现状
current status 养殖环境监测系统 养殖用水监测 溶氧、pH、水温、盐度、氧化还原电位(ORP)等 逐步开始产业化应用 尾水监测 三态氮、亚硝酸盐、COD等 应用较少 养殖气象监测 气温、气压、光辐照度、风速、风向、降雨量等 广泛应用

表 2 投喂装备研究现状

Table 2. Research status of feeding equipment

应用场景
application scenarios主要研究方向
main research directions成熟度
stage 池塘 自巡航虾塘移动投喂船 试验样机 料塔式集中投喂机 产品成熟 工厂化 轨道式投饲机 试验样机 智能投饲车 研发阶段 网箱 远距离风力投喂 产品成熟 大型投喂船 产品成熟

表 3 智能投喂决策算法研究现状

Table 3. Research status of intelligent feeding decision algorithms

技术类型
type of technology主要研究方向
main research directions适用场景
applicable scene成熟度
stage 光学
optics 水上摄食行为监测 池塘、工厂化、网箱 研发阶段 水下集群行为监测 工厂化、网箱 研发阶段 声学
acoustics 被动声学技术 池塘、网箱 试验样机 主动声学技术 网箱 研发阶段

Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Fisheries Technology Extension Center, China Society of Fisheries. 2021 China Fisheries Statistical Yearbook[M]. Beijing: China Agriculture Press, 2021 (in Chinese).

Ruan W, Wang Y, Ji W W, et al. Progress of sustainable development and management of aquaculture[J]. Fishery Information & Strategy, 2013, 28(4): 267-272 (in Chinese). doi: 10.3969/j.issn.1004-8340.2013.04.004

Task Force for the Study on Sustainable Development Strategy of Chinese Aquaculture Comprehensive Research Group. Development strategy on environmentally friendly aquaculture[J]. Engineering Sciences, 2016, 18(3): 1-7 (in Chinese). doi: 10.3969/j.issn.1009-1742.2016.03.002

Ye N H, Zhuang Z M, Wang Q Y. Development strategy for realizing the healthy aquaculture industry concept[J]. Engineering Sciences, 2016, 18(3): 101-104 (in Chinese). doi: 10.3969/j.issn.1009-1742.2016.03.018

Liu C L, Lin H Z, Li Y M, et al. Unmanned fishing grounds leading agricultural intelligence[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 1-18 (in Chinese). doi: 10.6041/j.issn.1000-1298.2020.01.001

Huang Y X, Bao X T, Xu H. Research progress of fishery equipment science and technology in China[J]. Fishery Modernization, 2023, 50(4): 1-11 (in Chinese).

Ministry of Agriculture and Rural Affairs of the People's Republic of China, National Fisheries Technology Extension Center, China Society of Fisheries. 2022 China Fisheries Statistical Yearbook[M]. Beijing: China Agriculture Press, 2022 (in Chinese).

Liu T C, Liu J, Wang J, et al. Optimization of the intelligent sensing model for environmental information in aquaculture waters based on the 5G smart sensor network[J]. Journal of Sensors, 2022, 2022: 6409046.

Ehlers S M, Maxein J, Koop J H E. Low‐cost microplastic visualization in feeding experiments using an ultraviolet light‐emitting flashlight[J]. Ecological Research, 2020, 35(1): 265-273. doi: 10.1111/1440-1703.12080

Wei Y G, Li W S, An D, et al. Equipment and intelligent control system in aquaponics: A review[J]. IEEE Access, 2019, 7: 169306-169326. doi: 10.1109/ACCESS.2019.2953491

Føre M, Frank K, Norton T, et al. Precision fish farming: A new framework to improve production in aquaculture[J]. Biosystems Engineering, 2018, 173: 176-193. doi: 10.1016/j.biosystemseng.2017.10.014

Biazi V, Marques C. Industry 4.0-based smart systems in aquaculture: A comprehensive review[J]. Aquacultural Engineering, 2023, 103: 102360. doi: 10.1016/j.aquaeng.2023.102360

Cao S Q, Ge Z R, Zhang Z. Buoy water quality monitoring system and prediction model based on internet of things[J]. Journal of Agricultural Machinery, 2021, 52(11): 210-218 (in Chinese). doi: 10.6041/j.issn.1000-1298.2021.11.022

Zhang J L, Xu L H, Liu S J. Classification of Atlantic salmon feeding behavior based on underwater machine vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 158-164 (in Chinese). doi: 10.11975/j.issn.1002-6819.2020.13.019

Zuo Q, Tian Y C, Ma G Q. Research progress and problems of aquaculture intelligent feeding system[J]. Journal of Tianjin Agricultural University, 2020, 27(4): 73-77 (in Chinese). doi: 10.19640/j.cnki.jtau.2020.04.014

Li M Z, Zhang G F, Yu G Z, et al. Design and experiment of grading and counting device for scallop seedling[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(21): 93-101 (in Chinese). doi: 10.11975/j.issn.1002-6819.2015.21.012

Gong M G, Meng F L, Huang Y X, et al. Research on development status and countermeasures of intelligent aquaculture in China[J]. Fishery Modernization, 2018, 45(6): 60-66 (in Chinese). doi: 10.3969/j.issn.1007-9580.2018.06.010

Huang Y X, Ding J L, Bao X T, et al. Development research on China fishery equipment and engineering technology[J]. Fishery Modernization, 2019, 46(5): 1-8 (in Chinese). doi: 10.3969/j.issn.1007-9580.2019.05.001

Zhou X Y, Ni Q, Xu H, et al. Development report of China aquaculture whole-process mechanization in 2021[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(12): 1-4 (in Chinese). doi: 10.13733/j.jcam.issn.2095-5553.2022.12.001

Gu H T, Wang Y Q. The development status, issues and trends of pond aeration technology in China[J]. Fishery Modernization, 2014, 41(5): 65-68 (in Chinese). doi: 10.3969/j.issn.1007-9580.2014.05.19

Wang X Y, Hong J Q, Sun Y P, et al. Design of trajectory planning system for river crab farming with automatic feeding boat[J]. Journal of Physics:Conference Series, 2020, 1575(1): 012143. doi: 10.1088/1742-6596/1575/1/012143

Hong Y, Chen X L, Tian C F, et al. Design and test of a kind of moving feeding device for crab and shrimp ponds[J]. Fishery Modernization, 2018, 45(3): 9-14 (in Chinese). doi: 10.3969/j.issn.1007-9580.2018.03.002

Chen X L, Tian C F, Yang J P, et al. Research on pneumatic automatic feeding machine for intensive pond aquaculture[J]. Fishery Modernization, 2016, 43(5): 18-22 (in Chinese). doi: 10.3969/j.issn.1007-9580.2016.05.004

Liu X G, Xu H, Zhang Y J, et al. Development and experiment of movable pond aquaculture water quality regulation machine based on solar energy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(19): 1-10 (in Chinese). doi: 10.3969/j.issn.1002-6819.2014.19.001

Wu Z F, Cheng G F, Wang X R, et al. Evaluation on aeration performance of movable solar aerator[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(23): 246-252 (in Chinese). doi: 10.3969/j.issn.1002-6819.2014.23.031

Shang J Y, Tang Y H. Research progress of the dissolved oxygen sensor[J]. Micronanoelectronic Technology, 2014, 51(3): 168-175,202 (in Chinese). doi: 10.13250/j.cnki.wndz.2014.03.006

Liu Y S, Diao Y X, Hu G X, et al. Renewable antimony-based pH sensor[J]. Journal of Electroanalytical Chemistry, 2023, 928: 117085. doi: 10.1016/j.jelechem.2022.117085

Trevathan J, Read W, Sattar A. Implementation and calibration of an IoT light attenuation turbidity sensor[J]. Internet of Things, 2022, 19: 100576. doi: 10.1016/j.iot.2022.100576

Chauhan M, Singh V K. Hydrothermally grown ZnO nanorods based optical fiber sensor for salinity detection[J]. Measurement, 2022, 203: 111913. doi: 10.1016/j.measurement.2022.111913

Liu F, Wei S P, Li B, et al. A novel fast response and high precision water temperature sensor based on Fiber Bragg Grating[J]. Optik, 2023, 289: 171257. doi: 10.1016/j.ijleo.2023.171257

Huang Y X, Tian C F, Meng F L, et al. Research on the history, current situation and development of pond culture facilities and equipment in China[J]. Fishery Modernization, 2020, 47(3): 10-15 (in Chinese). doi: 10.3969/j.issn.1007-9580.2020.03.002

Huang Y X, Xu H, Ding J L. Situation of China Land-based Aquaculture Engineering Equipment and Suggestion for Its Development[J]. Guizhou Agricultural Sciences, 2016, 44(7): 87-91 (in Chinese). doi: 10.3969/j.issn.1001-3601.2016.07.025

Yang J M, Zhu H F. Lift type automatic water quality detection system for aquaculture[J]. Fishery Modernization, 2016, 43(4): 1-5 (in Chinese). doi: 10.3969/j.issn.1007-9580.2016.04.001

Cui L X, Ni Q, Zhuang B L, et al. Design and experiment for PLC-based rail-type automatic feeding system of factory aquaculture[J]. Guangdong Agricultural Sciences, 2014, 41(22): 159-165 (in Chinese). doi: 10.3969/j.issn.1004-874X.2014.22.035

Xiao M H, Li Y J, Wang X C, et al. Research progress of aquaculture tailwater treatment technology and equipment[J]. Journal of Nanjing Agricultural University, 2023, 46(1): 1-13 (in Chinese). doi: 10.7685/jnau.202201028

Chen H. Design and application of rotary drum backwashing microfilter[J]. Fujian Agricultural Machinery, 2022(1): 4-7,25 (in Chinese). doi: 10.3969/j.issn.1004-3969.2022.01.002

Roy S M, Pareek C M, Machavaram R, et al. Optimizing the aeration performance of a perforated pooled circular stepped cascade aerator using hybrid ANN-PSO technique[J]. Information Processing in Agriculture, 2022, 9(4): 533-546. doi: 10.1016/j.inpa.2021.09.002

Guan C W, Yang J, Shan J J, et al. Water treatment performance of O3/UV reaction system in recirculating aquaculture systems[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(23): 253-259 (in Chinese). doi: 10.3969/j.issn.1002-6819.2014.23.032

Shi M M, Ruan Y J, Liu H, et al. Solid phase distribution simulation of culture pond with recirculating biofloc technology based on computational fluid dynamics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(2): 252-258 (in Chinese). doi: 10.11975/j.issn.1002-6819.2017.02.035

Zhang H G, Guan C W. Effluent purifying performance of new style fluidized-sand biofilter in recirculating aquaculture system[J]. Chinese Agricultural Science Bulletin, 2016, 32(29): 29-35 (in Chinese). doi: 10.11924/j.issn.1000-6850.casb16070138

Huang X H, Pang G L, Yuan T P, et al. Review of engineering and equipment technologies for deep-sea cage aquaculture in China[J]. Progress in Fishery Sciences, 2022, 43(6): 121-131 (in Chinese). doi: 10.19663/j.issn2095-9869.20210816003

Bao X T, Chen Z X, Cui M C, et al. Discussion and consideration on the development of deep sea aquaculture equipment in China[J]. Fishery Modernization, 2022, 49(5): 8-14 (in Chinese).

Fu X Y, Huang D Z, Xu H L, et al. Overview of the Development of Cage Aquaculture in Deep Sea[J]. Journal of Aquaculture, 2021, 42(10): 23-26 (in Chinese). doi: 10.3969/j.issn.1004-2091.2021.10.006

Wang Z Y, Feng S Q. Current status of fish capture technology in cage aquaculture[J]. Journal of Aquaculture, 2021, 42(7): 64-65 (in Chinese). doi: 10.3969/j.issn.1004-2091.2021.07.017

Huang Y X, Xu H, Ding J L. Research on the development of offshore aquaculture facilities and equipment in China[J]. Fishery Modernization, 2016, 43(2): 76-81 (in Chinese). doi: 10.3969/j.issn.1007-9580.2016.02.014

Selection results of light simplified technical equipment for pond aquaculture tail water treatment and raft suspended and bottom sowing enhanced aquaculture in 2022[EB/EO]. (2022-10-14). http://www.amic.agri.cn/secondLevelPage/info/30/146652 (in Chinese).

Li D L, Yang H. State-of-the-art review for internet of things in agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 1-20 (in Chinese). doi: 10.6041/j.issn.1000-1298.2018.01.001

Yin B Q, Cao S S, Fu Z T, et al. Review and trend analysis of water quality monitoring and control technology in aquaculture[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 1-13 (in Chinese). doi: 10.6041/j.issn.1000-1298.2019.02.001

Zhang K, Zhang H L, Li W J, et al. PtOEP/PS composite particles based on fluorescent sensor for dissolved oxygen detection[J]. Materials Letters, 2016, 172: 112-115. doi: 10.1016/j.matlet.2016.02.119

Rungsima C, Boonyan N, Klorvan M, et al. Hydrogel sensors with pH sensitivity[J]. Polymer Bulletin, 2021, 78(10): 5769-5787. doi: 10.1007/s00289-020-03398-8

Prerana M R, Shenoy B P, Pal B D, et al. Design, analysis, and realization of a turbidity sensor based on collection of scattered light by a fiber-optic probe[J]. IEEE Sensors Journal, 2012, 12(1): 44-50. doi: 10.1109/JSEN.2011.2128306

Pu H B, Liu D, Qu J H, et al. Applications of imaging spectrometry in inland water quality monitoring—a review of recent developments[J]. Water, Air, & Soil Pollution, 2017, 228(4): 131.

Carstea E M, Bridgeman J, Baker A, et al. Fluorescence spectroscopy for wastewater monitoring: A review[J]. Water Research, 2016, 95: 205-219. doi: 10.1016/j.watres.2016.03.021

Li D L, Liu C. Recent advances and future outlook for artificial intelligence in aquaculture[J]. Smart Agriculture, 2020, 2(3): 1-20 (in Chinese).

Duan Y E, Li D L, Li Z B, et al. Review on visual characteristic measurement research of aquatic animals based on computer vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(15): 1-11 (in Chinese). doi: 10.11975/j.issn.1002-6819.2015.15.001

Endo H, Wu H Y. Biosensors for the assessment of fish health: A review[J]. Fisheries Science, 2019, 85(4): 641-654. doi: 10.1007/s12562-019-01318-y

Li D L, Wang G X, Du L, et al. Recent advances in intelligent recognition methods for fish stress behavior[J]. Aquacultural Engineering, 2022, 96: 102222. doi: 10.1016/j.aquaeng.2021.102222

Hvas M, Folkedal O, Oppedal F. Heart rate bio-loggers as welfare indicators in Atlantic salmon (Salmo salar) aquaculture[J]. Aquaculture, 2020, 529: 735630. doi: 10.1016/j.aquaculture.2020.735630

Wu H Y, Aoki A, Arimoto T, et al. Fish stress become visible: A new attempt to use biosensor for real-time monitoring fish stress[J]. Biosensors and Bioelectronics, 2015, 67: 503-510. doi: 10.1016/j.bios.2014.09.015

Wu H Y, Ohnuki H, Hibi K, et al. Development of a label-free immunosensor system for detecting plasma cortisol levels in fish[J]. Fish Physiology and Biochemistry, 2016, 42(1): 19-27. doi: 10.1007/s10695-015-0113-2

Wu H Y, Ohnuki H, Ota S, et al. New approach for monitoring fish stress: A novel enzyme-functionalized label-free immunosensor system for detecting cortisol levels in fish[J]. Biosensors and Bioelectronics, 2017, 93: 57-64. doi: 10.1016/j.bios.2016.10.001

Endo H, Yonemori Y, Musiya K, et al. A needle-type optical enzyme sensor system for determining glucose levels in fish blood[J]. Analytica Chimica Acta, 2006, 573-574: 117-124. doi: 10.1016/j.aca.2006.04.068

Takase M, Yoneyama Y, Murata M, et al. Mediator-type biosensor for real-time wireless monitoring of blood glucose concentrations in fish[J]. Fisheries Science, 2012, 78(3): 691-698. doi: 10.1007/s12562-012-0495-3

Makaras T, Razumienė J, Gurevičienė V, et al. A new approach of stress evaluation in fish using β-D-Glucose measurement in fish holding-water[J]. Ecological Indicators, 2020, 109: 105829. doi: 10.1016/j.ecolind.2019.105829

Saberioon M, Císař P. Automated within tank fish mass estimation using infrared reflection system[J]. Computers and Electronics in Agriculture, 2018, 150: 484-492. doi: 10.1016/j.compag.2018.05.025

Hao M M, Yu H L, Li D L. The measurement of fish size by machine vision-a review[C]//Proceedings of the 9th International Conference on Computer and Computing Technologies in Agriculture. Beijing, China: Springer, 2016: 15-32.

Pérez D, Ferrero F J, Álvarez I, et al. Automatic measurement of fish size using stereo vision[C]//Proceedings of 2018 IEEE International Instrumentation and Measurement Technology Conference. Houston: IEEE, 2018.

Liu S J, Li G D, Tu X Y, et al. Research on the development of aquaculture production information technology[J]. Fishery Modernization, 2021, 48(3): 1-9 (in Chinese).

Garcia R, Prados R, Quintana J, et al. Automatic segmentation of fish using deep learning with application to fish size measurement[J]. ICES Journal of Marine Science, 2020, 77(4): 1354-1366. doi: 10.1093/icesjms/fsz186

Costa C, Antonucci F, Boglione C, et al. Automated sorting for size, sex and skeletal anomalies of cultured seabass using external shape analysis[J]. Aquacultural Engineering, 2013, 52: 58-64. doi: 10.1016/j.aquaeng.2012.09.001

Qian C. The three-dimensional detection system for high-throughput growth status of underwater fish independently developed by the Fishery Machinery Institute has successfully completed on-board testing and been delivered for use on the "Guoxin 1" ship[EB/OL]. (2022-11-24). http://www.fmiri.ac.cn/info/1013/22528.htm (in Chinese).

Papadakis V M, Papadakis I E, Lamprianidou F, et al. A computer-vision system and methodology for the analysis of fish behavior[J]. Aquacultural Engineering, 2012, 46: 53-59. doi: 10.1016/j.aquaeng.2011.11.002

Wang H, Zeng L J, Yin C Y. A video tracking system for measuring the position and body deformation of a swimming fish[J]. Review of Scientific Instruments, 2002, 73(12): 4381-4384. doi: 10.1063/1.1518143

Dell A I, Bender J A, Branson K, et al. Automated image-based tracking and its application in ecology[J]. Trends in Ecology & Evolution, 2014, 29(7): 417-428.

Kleinhappel T K, Pike T W, Burman O H P. Stress-induced changes in group behaviour[J]. Scientific Reports, 2019, 9(1): 17200. doi: 10.1038/s41598-019-53661-w

Israeli D, Kimmel E. Monitoring the behavior of hypoxia-stressed Carassius auratus using computer vision[J]. Aquacultural Engineering, 1996, 15(6): 423-440. doi: 10.1016/S0144-8609(96)01009-6

Zheng H Y, Liu R, Zhang R, et al. A method for real-time measurement of respiratory rhythms in medaka (Oryzias latipes) using computer vision for water quality monitoring[J]. Ecotoxicology and Environmental Safety, 2014, 100: 76-86. doi: 10.1016/j.ecoenv.2013.11.016

Terayama K, Hioki H, Sakagami M A. Measuring tail beat frequency and coast phase in school of fish for collective motion analysis[C]//Proceedings of SPIE 10225, Eighth International

Kelley J L, Phillips B, Cummins G H, et al. Changes in the visual environment affect colour signal brightness and shoaling behaviour in a freshwater fish[J]. Animal Behaviour, 2012, 83(3): 783-791. doi: 10.1016/j.anbehav.2011.12.028

Li D L, Hao Y F, Duan Y Q. Nonintrusive methods for biomass estimation in aquaculture with emphasis on fish: A review[J]. Reviews in Aquaculture, 2020, 12(3): 1390-1411. doi: 10.1111/raq.12388

Ohshimo S. Spatial distribution and biomass of pelagic fish in the East China Sea in summer, based on acoustic surveys from 1997 to 2001[J]. Fisheries Science, 2004, 70(3): 389-400. doi: 10.1111/j.1444-2906.2004.00818.x

Rowell T J, Nemeth R S, Schärer M T, et al. Fish sound production and acoustic telemetry reveal behaviors and spatial patterns associated with spawning aggregations of two Caribbean groupers[J]. Marine Ecology Progress Series, 2015, 518: 239-254. doi: 10.3354/meps11060

Handegard N O, Tenningen M, Howarth K, et al. Effects on schooling function in mackerel of sub-lethal capture related stressors: Crowding and hypoxia[J]. PLoS One, 2017, 12(12): e0190259. doi: 10.1371/journal.pone.0190259

Jézéquel Y, Bonnel J, Coston-Guarini J, et al. Sound characterization of the European lobster Homarus gammarus in tanks[J]. Aquatic Biology, 2018, 27: 13-23. doi: 10.3354/ab00692

Hassan S G, Ahmed S, Iqbal S, et al. Fish as a source of acoustic signal measurement in an aquaculture tank: Acoustic sensor based time frequency analysis[J]. International Journal of Agricultural and Biological Engineering, 2019, 12(3): 110-117. doi: 10.25165/j.ijabe.20191203.4238

Yin L M, Chen X Z, Zhang X G, et al. Measurement and analysis of the aquaculture noise for Larimichthys crocea in the fiberglass fish tank[J]. Marine Fisheries, 2017, 39(3): 314-321 (in Chinese). doi: 10.3969/j.issn.1004-2490.2017.03.009

Brown A, Garg S, Montgomery J. Automatic rain and cicada chorus filtering of bird acoustic data[J]. Applied Soft Computing, 2019, 81: 105501. doi: 10.1016/j.asoc.2019.105501

Zuo Q, Tian Y C, Ma G Q. Research progress and problems of aquaculture intelligent feeding system[J]. Journal of Tianjin Agricultural University, 2020, 27(4): 73-77 (in Chinese). doi: 10.19640/j.cnki.jtau.2020.04.014

Yuan K, Zhuang B L, Ni Q, et al. Design and experiments of automatic feeding system for indoor industrialization aquaculture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 169-176 (in Chinese).

Xiao H J, Liu K, Li L L, et al. Design of intelligent feeding car for multi-layer sink-type industrialized recirculating aquaculture system[J]. Fishery Modernization, 2019, 46(1): 21-26 (in Chinese). doi: 10.3969/j.issn.1007-9580.2019.01.004

Liu Z Q, Liu S X, Li W, et al. Design and test on feeding gun for marine cage calture[J]. Fishery Modernization, 2015, 42(3): 38-42 (in Chinese). doi: 10.3969/j.issn.1007-9580.2015.03.008

Oehme M, Aas T S, Sørensen M, et al. Feed pellet distribution in a sea cage using pneumatic feeding system with rotor spreader[J]. Aquacultural Engineering, 2012, 51: 44-52. doi: 10.1016/j.aquaeng.2012.07.001

Zhao J, Zhu S M, Ye Z Y, et al. Assessing method for feeding activity of swimming fishes in RAS[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 288-293 (in Chinese). doi: 10.6041/j.issn.1000-1298.2016.08.038

Chen C W, Du Y G, Zhou C, et al. Evaluation of feeding activity of shoal based on image texture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(5): 232-237 (in Chinese). doi: 10.11975/j.issn.1002-6819.2017.05.034

Qiao F, Zheng D, Hu L Y, et al. Research on smart bait casting machine based on machine vision technology[J]. Chinese Journal of Engineering Design, 2015, 22(6): 528-533 (in Chinese). doi: 10.3785/j.issn.1006-754X.2015.06.003

Guo J. Research on feeding patterns and bait technology of fish culture based on information of image and sound[D]. Ningbo: Ningbo University, 2018 (in Chinese).

Zhao L, Song X F, Li X, et al. Design and simulation of roller fish grader[J]. Fishery Modernization, 2023, 50(4): 68-75 (in Chinese).

Hong Y, Zhu Y, Jiang T, et al. Design and test of rotary live fish grading and counting device[J]. Fishery Modernization, 2019, 46(4): 49-54 (in Chinese). doi: 10.3969/j.issn.1007-9580.2019.04.008

Ma X Y, Li M, Xiong W C, et al. Design of sea cucumber grading and counting equipment based on technology of image recognition[J]. Journal of Dalian Fisheries University, 2016, 24(6): 549-552 (in Chinese).

Zhou X L, Ma C, Wang Z P, et al. Design and implementation of trait measurement system for common carp (Cyprinus carpio) and crucian carp (Carassius auratus) based on machine vision[J]. Fishery Modernization, 2022, 49(6): 108-117 (in Chinese). doi: 10.3969/j.issn.1007-9580.2022.06.014

Li Y J, Huang K W, Xiang J. Measurement of dynamic fish dimension based on stereoscopic vision[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 220-226 (in Chinese). doi: 10.11975/j.issn.1002-6819.2020.21.026

Liao Y H, Zhou C W, Liu W Z, et al. 3DPhenoFish: Application for two- and three-dimensional fish morphological phenotype extraction from point cloud analysis[J]. Zoological Research, 2021, 42(4): 492-502. doi: 10.24272/j.issn.2095-8137.2021.141

相关知识

2023年中国水产养殖设备行业发展现状分析:水产养殖设备品类繁多,产品价格分化明显[图]
水产养殖机械发展现状、问题与挑战及发展建议​
水产养殖机械发展现状、问题与挑战及发展建议​ 行业动态 重庆市水产科学研究所
三门县“高端装备与相关技术服务助推水产养殖绿色高质量发展”高研班开班
我国设施园艺装备发展现状和建议
广东水产品总产量和水产养殖产量稳居全国第一 打造水产种业“南繁硅谷”
水产养殖设施与深水养殖平台工程发展战略
LED光照新技术,点亮水产养殖“新视界”
2025广州水产养殖展
水产养殖细菌性病害检测方法实践研究

网址: 中国水产养殖装备发展现状 https://m.huajiangbk.com/newsview1957937.html

所属分类:花卉
上一篇: 中国海水网箱的产业发展现状与未来
下一篇: 水产养殖设备有哪些?全面了解养殖