首页 > 分享 > 基于图神经网络模型的系统毒理学研究展望

基于图神经网络模型的系统毒理学研究展望

摘要:系统毒理学是建立在系统生物学基础上,综合多组学分析和传统毒理学方法,借助生物信息学和计算毒理学等模型化信息整合技术,对生物系统在外源化学物质扰动下保持稳定的能力进行评估,研究外源化学物质与生物系统相互作用机制的一门学科。转录组、蛋白质组、代谢组、暴露组等多组学数据,有多维度、多尺度、多关联的特征,为系统毒理学建模奠定了数据基础。如何利用计算建模,对多组学数据进行有效挖掘成为有待攻克的瓶颈。针对多组学数据的特点,基于网络的模型有着通用性强、灵活性强、包含节点间关系信息等优势,在系统毒理学中起到整合与挖掘多组学数据的关键作用。图神经网络(GNN)作为一种深度学习方法,在系统毒理学建模中展现了良好的应用前景。本文介绍了系统毒理学的研究目的、网络分析方法的研究策略,对GNN在系统毒理学领域的应用进行了展望。

Abstract:Systems toxicology can be regarded as an interdiscipline that is based on systems biology and combines multi-omics data analysis and classical toxicology methods. With information integration technologies such as bioinformatics and computational toxicology, systems toxicology can evaluate ability of biological systems to maintain stability under perturbation of xenobiotics and describe interactions of xenobiotics with biological systems. Transcriptomics, proteomics, metabolomics and exposomics data are multi-dimensional, multi-scaled and multi-correlational, and can lay a data foundation for systems toxicology modeling. It has become a technological bottleneck to use computational modeling for effective mining the multi-omics data. Network-based models exhibit advantages of high generality and flexibility, can characterize relationship information between nodes, and thus are suitable for dealing with multi-omics data, and can play a key role in integrating and mining multi-omics data in systems toxicology. Graph neural network (GNN) as a deep learning method, shows good application prospects in systems toxicology modeling. In this perspective, research orientations of systems toxicology and research strategies of network analysis methods are introduced, and application of GNN in systems toxicology is envisaged.

图 1 基于图神经网络的系统毒理学

Figure 1. Systems toxicology based on graph neural network

图 2 多组学网络模型示意图

Figure 2. Schematic diagram of multi-omics network model

[1]HAGEN J B. The origins of bioinformatics [J]. Nature Reviews Genetics, 2020, 1: 231-236. [2]KANEHISA M, BORK P. Bioinformatics in the post-sequence era [J]. Nature Genetics, 2003, 33: 305-310. doi: 10.1038/ng1109 [3]GAUTHIER J, VINCENT A T, CHARETTE S J, et al. A brief history of bioinformatics [J]. Briefings in Bioinformatics, 2019, 20(6): 1981-1996. doi: 10.1093/bib/bby063 [4]陈景文, 王中钰, 傅志强. 环境计算化学与毒理学[M]. 北京: 科学出版社, 2018, 22-34.

CHEN J W, WANG Z Y, FU Z Q. Computational chemistry and toxicology of the environment[M]. Beijing: Science Press, 2018, 22-34(in Chinese).

[5]王中钰, 陈景文, 乔显亮, 等. 面向化学品风险评价的计算(预测)毒理学 [J]. 中国科学:化学, 2016, 46(2): 222-240.

WANG Z Y, CHEN J W, QIAO X L, et al. Computational toxicology: oriented for chemicals risk assessment [J]. Science China Chemistry, 2016, 46(2): 222-240(in Chinese).

[6]KAVLOCK R, DIX D. Computational toxicology as implemented by the US EPA: Providing high throughput decision support tools for screening and assessment chemical exposure, hazard and risk [J]. Journal of Toxicology and Environmental Health, Part B:Critical Reviews, 2010, 13(2-4): 197-217. doi: 10.1080/10937404.2010.483935 [7]王先良, 徐顺清. 系统毒理学及其应用 [J]. 生态毒理学报, 2006, 1(4): 289-294.

WANG X L, XU S Q. Systems toxicology [J]. Asian Journal of Ecotoxicology, 2006, 1(4): 289-294(in Chinese).

[8]SHANA J S, ALAN R B, REX E F, et al. Systems toxicology: from basic research to risk assessment [J]. Chemical Research in Toxicology, 2014, 27(3): 314-329. doi: 10.1021/tx400410s [9]THOMAS H, REX E F, PAUL J, et al. Systems toxicology: real world applications and opportunities [J]. Chemical Research in Toxicology, 2017, 30(4): 870-882. doi: 10.1021/acs.chemrestox.7b00003 [10]桂起权. 解读系统生物学: 还原论与整体论的综合 [J]. 自然辩证法通讯, 2015, 37(5): 219.

GUI Q Q. Reading of systems biology: integration of reductionism and holism [J]. Journal of Dialectics of Nature, 2015, 37(5): 219(in Chinese).

[11]AARDEMA M J, MACGREGOR J T. Toxicology and genetic toxicology in the new era of 'Toxicogenomics': impact of '-Omics' technologies [J]. Mutation Research, 2002, 499(1): 13-25. doi: 10.1016/S0027-5107(01)00292-5 [12]IDEKER T, GALITSKI T, HOOD L. A new approach to decoding life: systems biology [J]. Annual Review of Genomics and Human Genetics, 2001, 2: 343-372. doi: 10.1146/annurev.genom.2.1.343 [13]WATERS M D, BOORMAN G, BUSHEL P, et al. Systems toxicology and the chemical effects in biological systems (CEBS) knowledge base [J]. Environmental Health Perspectives, 2003, 111(6): 811-824. doi: 10.1289/ehp.5971 [14]KITANO H. Systems biology: A brief overview [J]. Science, 2002, 295(5560): 1662-1664. doi: 10.1126/science.1069492 [15]WATERS M D, FOSTEL J M. Toxicogenomics and systems toxicology: aims and prospects [J]. Nature Reviews Genetics, 2004, 5(12): 936-948. doi: 10.1038/nrg1493 [16]HARTUNG T, VLIET E, JAWORSKA J, et al. Food for thought [J]. Systems Toxicology ALTEX, 2012, 29: 119-128. [17]PLANT N J. An introduction to systems toxicology [J]. Toxicology Research, 2015, 4: 9-22. doi: 10.1039/C4TX00058G [18]李杰, 李柯佳, 张臣, 等. 计算系统毒理学: 形成、发展及应用 [J]. 科学通报, 2015, 60(19): 1751-1760. doi: 10.1360/N972014-01400

LI J, LI K J, ZHANG C, et al. Computational systems toxicology: Emergence, development and application [J]. Chinese Science Bulletin, 2015, 60(19): 1751-1760(in Chinese). doi: 10.1360/N972014-01400

[19]QUINN R A, MELNIK A V, VRBANAC A, et al. Global chemical effects of the microbiome include new bile-acid conjugations [J]. Nature, 2020, 579: 123-129. doi: 10.1038/s41586-020-2047-9 [20]KIMURA I, MIYAMOTO J, KITANO R O, et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice [J]. Science, 2020, 367(6481): 8429. doi: 10.1126/science.aaw8429 [21]KREWSKI D, JR. A D, ANDERSEN M, et al. Toxicity testing in the 21st century: A vision and a strategy [J]. Journal Toxicology Environmental Health-Part B-Critical Reviews, 2010, 13: 51-138. doi: 10.1080/10937404.2010.483176 [22]ZHANG Q, BHATTACHARYA S, ANDERSEN M E, et al. Computational systems biology and dose-response modeling in relation to new directions in toxicity testing [J]. Journal of Toxicology and Environmental Health, Part B:Critical Reviews, 2010, 13(2-4): 253-276. doi: 10.1080/10937404.2010.483943 [23]ZHANG Q, BHATTACHARYA S, CONOLLY R B, et al. Molecular signaling network motifs provide a mechanistic basis for cellular threshold responses [J]. Environmental Health Perspectives, 2014, 122(12): 61-70. [24]SHAO Z M, WANG K K, ZHANG S Y, et al. Ingenuity pathway analysis of differentially expressed genes involved in signaling pathways and molecular networks in RhoE gene-edited cardiomyocytes [J]. International Journal of Molecular Medicine, 2020, 46(3): 1225-1238. doi: 10.3892/ijmm.2020.4661 [25]KANEHISA M, GOTO S, FURUMICHI M, et al. KEGG for representation and analysis of molecular networks involving diseases and drugs [J]. Nucleic Acids Research, 2010, 28(Suppl_1): 355-360. [26]ZHANG Y J, LIN H F, YANG Z H, et al. A method for predicting protein complex in dynamic PPI networks [J]. BMC Bioinformatics, 2016, 17(7): 229. [27]MANIPUR I, GRANATA I, MADDALENA L, et al. Clustering analysis of tumor metabolic networks [J]. BMC Bioinformatics, 2020, 21: 349. doi: 10.1186/s12859-020-03564-9 [28]BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks [EB/OL]. [2021-5-15]. arXiv preprint, 2018,https://export.arxiv.org/pdf/1806.01261. [29]SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks [J]. Genome Research, 2003, 13: 2498-2504. doi: 10.1101/gr.1239303 [30]BATAGELJ V, MRVAR A. Pajek-program for large network analysis [J]. Connections, 1998, 21: 47-57. [31]JAN S, ANNE C G. SnapShot: protein-protein interaction networks [J]. Cell, 2011, 144(6): 1000-1001. doi: 10.1016/j.cell.2011.02.025 [32]JOERG M, AMITABH S, MAKSIM K, et al. Uncovering disease-disease relationships through the incomplete interactome [J]. Science, 2015, 347(6224): 1257601. doi: 10.1126/science.1257601 [33]KARINE A, PHILIPPE G. Application of computational systems biology to explore environmental toxicity hazards [J]. Environmental Health Perspectives, 2011, 119(12): 1754-1759. doi: 10.1289/ehp.1103533 [34]DAI W N, TANG T T, DAI Z H, et al. Probing the mechanism of hepatotoxicity of hexabromocyclododecanes through toxicological network analysis [J]. Environmental Science & Technology, 2020, 54(23): 15235-15245. [35]GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks [EB/OL]. [2021-5-15]. arXiv preprint, 2016, https://cs.stanford.edu/people/jure/pubs/node2vec-kdd16.pdf. [36]FIGUEIREDO D R, RIBEIRO L F R, SAVERESE P H P. Struc2vec: Learning node representations from structural identity [EB/OL]. [2021-5-15]. arXiv preprint, 2017, https://export.arxiv.org/pdf/1704.03165. [37]SEJNOWSKI T J. The unreasonable effectiveness of deep learning in artificial intelligence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(48): 30033-30038. [38]XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks [EB/OL]. [2021-5-15]. arXiv preprint, 2018, https://export.arxiv.org/pdf/1810.00826. [39]BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs [EB/OL]. [2021-5-15]. arXiv preprint, 2013,https://arxiv.org/pdf/1312.6203.pdf. [40]LIU Q, HU Z Q, JIANG R, et al. DeepCDR: A hybrid graph convolutional network for predicting cancer drug response [J]. Bioinformatics, 2020, 26(Supplement_2): 911-918. [41]ZHANG F, WANG M H, XI J N, et al. A novel heterogeneous network-based method for drug response prediction in cancer cell lines [J]. Scientific Reports, 2018, 8: 3355. doi: 10.1038/s41598-018-21622-4 [42]SCHAFF J, FINK C, SLEPCHENKO B, et al. A general computational framework for modeling cellular structure and function [J]. Biophysical Journal, 1997, 73(3): 1135-1146. doi: 10.1016/S0006-3495(97)78146-3 [43]YAHYA F A, HASHIM N F, ALI D A I, et al. A brief overview to systems biology in toxicology:The journey from in to vivo, in-vitro and -omics [J]. Journal of King Saud University-Science, 2020, 33(1): 101254. [44]KRISTIN S, BEAT B F, DANIELLE J M, et al. Transcriptomics in ecotoxicology [J]. Analytical and Bioanalytical Chemistry, 2010, 397(3): 917-923. doi: 10.1007/s00216-010-3662-3 [45]LANGFELDER P, HORVATH S. WGCNA: An package for weighted correlation network analysis [J]. BMC Bioinformatics, 2008, 9(559): 1471-2105. [46]TIAN Z L, HE W X, TANG J N, et al. Identification of important modules and biomarkers in breast cancer based on WGCNA [J]. OncoTargets and Therapy, 2020, 13: 6805-6817. doi: 10.2147/OTT.S258439 [47]陈铭. 生物信息学(第3版)[M]. 北京: 科学出版社, 2018, 118-121.

CHEN M. Bioinformatics (Third Edition) [M]. Beijing: Science Press, 2018, 118-121(in Chinese).

[48]KANEHISA M, FURUMICHI M, TANABE M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs [J]. Nucleic Acids Research, 2016, 45(D1): 353-361. [49]OBERHARDT M A, PUCHAIKA J, MARTINS V A P, et al. Reconciliation of genome-scale metabolic reconstructions for comparative systems analysis [J]. PLOS Computational Biology, 2011, 7(3): 1001116. doi: 10.1371/journal.pcbi.1001116 [50]PITKÄNEN E, JOUHTEN P, HOU J, et al. Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species [J]. PLOS Computational Biology, 2014, 10(2): 1003465. doi: 10.1371/journal.pcbi.1003465 [51]KARLSEN E, SCHULZ C, ALMAAS E. Automated generation of genome-scale metabolic draft reconstructions based on KEGG [J]. BMC Bioinformatics, 2018, 19: 467. doi: 10.1186/s12859-018-2472-z [52]KRÄMER A, GREEN J, POLLARD J, et al. Causal analysis approaches in ingenuity pathway analysis [J]. Bioinformatics, 2014, 30(4): 523-530. doi: 10.1093/bioinformatics/btt703 [53]YUAN Y, JOSEPH Z B. GCNG: graph convolutional networks for inferring gene interaction from spatial transcriptomics data [J]. Genome Biology, 2020, 21: 200. doi: 10.1186/s13059-020-02088-y [54]WILKINS M R, SANCHEZ J C, GOOLEY A, et al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it [J]. Biotechnology and Genetic Engineering Reviews, 1996, 13(1): 19-50. doi: 10.1080/02648725.1996.10647923 [55]LEONIDAS G A, JULIO S R, BENJAMIN D C, et al. Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes [J]. Molecular & Cellular Proteomics, 2010, 9(9): 1849-1865. [56]BOLTZ T A, DEVKOTA P, WUCHTY S. Collective influencers in protein interaction networks [J]. Scientific Reports, 2019, 9: 3948. doi: 10.1038/s41598-019-40410-2 [57]RAMIREZ T, DANESHIAN M, KAMP H, et al. Metabolomics in toxicology and preclinical research [J]. ALTEX-Alternatives to Animal Experimentation, 2013, 30(2): 209-225. [58]LEONARDO D S, SALEH A, YARIV B, et al. Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation [J]. Expert Review of Proteomics, 2020, 17(4): 243-255. doi: 10.1080/14789450.2020.1766975 [59]LI X K, YANG H J, XIAO J C, et al. Network pharmacology-based investigation into the bioactive compounds and molecular mechanisms of schisandrae chinensis fructus against drug-induced liver injury [J]. Bio-organic Chemistry, 2020, 96: 103553. [60]LI X K, LI M Y, DENG S, et al. A network pharmacology-integrated metabolomics strategy for clarifying the action mechanisms of schisandrae chinensis fructus for treating drug-induced liver injury by acetaminophen [J]. Bio-organic & Medicinal Chemistry, 2021, 31: 115992. [61]WILD P C. Complementing the genome with an "Exposome":The outstanding challenge of environmental exposure measurement in molecular epidemiology [J]. Cancer Epidemiology Biomarkers & Prevention, 2005, 14(8): 1847-1850. [62]CHAKRAVARTI A, LITTLE P. Nature, nurture and human disease [J]. Nature, 2003, 421: 412-414. doi: 10.1038/nature01401 [63]RAPPAPORT S M. Discovering environmental causes of disease [J]. Journal of Epidemiology and Community Health, 2012, 66(2): 99-102. doi: 10.1136/jech-2011-200726 [64]KALLOO G, WELLENIUS G A, MCCANDLESS L, et al. Profiles and predictors of environmental chemical mixture exposure among pregnant women: the health outcomes and measures of the environment study [J]. Environmental Science & Technology, 2018, 52(17): 10104-10113. [65]CHEN H, ZHANG W X, ZHOU Y Q, et al. Characteristics of exposure to multiple environmental chemicals among pregnant women in Wuhan, China [J]. Science of the Total Environment, 2021, 754: 142167. doi: 10.1016/j.scitotenv.2020.142167 [66]ROBINSON O, BASAGANA X, AGIER L, et al. The pregnancy exposome: multiple environmental exposures in the inma-sabadell birth cohort [J]. Environmental Science & Technology, 2015, 49(17): 10632-10641. [67]VINCENT B, RUTHANN A R. Mapping the human exposome to uncover the causes of breast cancer [J]. International Journal of Environmental Research and Public Health, 2020, 17(1): 189. [68]RUIZ C, ZITNIK M, LESKOVEC J. Identification of disease treatment mechanisms through the multiscale interactome [J]. Nature Communications, 2021, 12: 1796. doi: 10.1038/s41467-021-21770-8 [69]LIU X M, ENRICO M, ARDA H, et al. Robustness and lethality in multilayer biological molecular networks [J]. Nature Communications, 2020, 11: 6043. doi: 10.1038/s41467-020-19841-3 [70]STEAD W. Clinical implications and challenges of artificial intelligence and deep learning [J]. JAMA, 2018, 320(11): 1107-1108. doi: 10.1001/jama.2018.11029 [71]SUN M Y, ZHAO S D, GILVARY C, et al. Graph convolutional networks for computational drug development and discovery [J]. Briefings in Bioinformatics, 2019, 21(3): 919-935. [72]TANG W, CHEN J W, WANG Z Y, et al. Deep learning for predicting toxicity of chemicals: A mini review [J]. Journal of Environmental Science and Health Part C- Environmental Carcinogenesis and Ecotoxicology Reviews, 2018, 36(4): 252-271. [73]ZHANG Z, CUI P, ZHU W. Deep learning on graphs: A survey [EB/OL]. [2021-5-15]. arXiv Preprint, 2018, https://export.arxiv.org/pdf/1812.04202. [74]ZHOU J, CUI G, ZHANG Z. Graph neural networks: A review of methods and applications [EB/OL]. [2021-5-15]. arXiv preprint, 2019, https://export.arxiv.org/ftp/arxiv/papers/1812/1812.08434.pdf. [75]GILMER J, SCHOENHOLZ S, RILEY P F, et al. Neural message passing for quantum chemistry [EB/OL]. [2021-5-15]. arXiv preprint, 2017, https://www.ics.uci.edu/~mohamadt/papers/Neural_message_passing.pdf. [76]HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs [EB/OL]. [2021-5-15]. arXiv preprint, 2017, https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf. [77]ATWOOD J, TOWSLEY D. Diffusion-convolutional neural networks [EB/OL]. [2021-5-15]. arXiv preprint, 2015, https://papers.nips.cc/paper/2016/file/390e982518a50e280d8e2b535462ec1f-Paper.pdf. [78]NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs [EB/OL]. [2021-5-15]. arXiv preprint, 2016, http://proceedings.mlr.press/v48/niepert16.pdf. [79]KRIZHEVSKY A, SUTSKEVER L, HINTON G E. ImageNet classification with deep convolutional neural networks[C]. In Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012, 1: 1097-1105. [80]ALLEN T E H, GOODMAN J M, GUTSELL S, et al. Defining molecular initiating events in the adverse outcome pathway framework for risk assessment [J]. Chemical Research in Toxicology, 2014, 27(12): 2100-2112. doi: 10.1021/tx500345j [81]ANKLEY G T, BENNETT R S, ERICKSON R J, et al. Adverse Outcome Pathways: A conceptual framework to support ecotoxicology research and risk assessment [J]. Environmental Toxicology and Chemistry, 2010, 29(3): 730-741. doi: 10.1002/etc.34 [82]KREWSKI D, ANDERSEN M E, TYSHENKO M G, et al. Toxicity testing in the 21st century: Progress in the past decade and future perspectives [J]. Archives of Toxicology, 2020, 94(1): 1-58. doi: 10.1007/s00204-019-02613-4 [83]CHEN S, ZHANG Z H, QING T, et al. Activation of the Nrf2 signaling pathway in Usnic Acid-induced toxicity in HepG2 cells [J]. Archives of Toxicology, 2017, 91: 1293-1307. doi: 10.1007/s00204-016-1775-y [84]LIU L, WU F Y, ZHU C Y, et al. Involvement of dopamine signaling pathway in neurodevelopmental toxicity induced by isoniazid in zebrafish [J]. Chemosphere, 2021, 265: 129109. doi: 10.1016/j.chemosphere.2020.129109 [85]DREIER D A, DANIELLE F M, JOEL N M, et al. Linking mitochondrial dysfunction to organismal and population health in the context of environmental pollutants: Progress and considerations for mitochondrial adverse outcome pathways [J]. Environmental Toxicology and Chemistry, 2019, 38(8): 1625-1634. [86]SKARDING J, GABRYS B, MUSIAL K. Foundations and modelling of dynamic networks using dynamic graph neural networks: A survey [EB/OL]. [2021-5-15]. arXiv preprint, 2020, https://export.arxiv.org/pdf/2005.07496.

相关知识

基于BP神经网络的农作物虫害预测系统的研究
基于农作物病害检测与识别的卷积神经网络模型研究进展
基于递归神经网络算法的电子物流配送系统配送路径优化
基于YOLO模型的玉米叶片病害识别研究
基于卷积神经网络和集成学习的材质识别和分割方法研究
基于改进型神经网络的植物病虫害预警模型的构建.pdf 全文
基于卷积神经网络的花卉识别方法
一类分数阶生态毒理学模型的定性分析
基于深度学习的花识别检测方法研究.pptx
基于改进YOLO v5s模型的水稻病虫害监测系统

网址: 基于图神经网络模型的系统毒理学研究展望 https://m.huajiangbk.com/newsview1965413.html

所属分类:花卉
上一篇: 可以放在室内的花,打造健康宜居的
下一篇: 植物毒理学文献计量分析及其研究思