摘要:
目的
探究兰科菌根真菌(orchid mycorrhizal fungi,OMF)对不同形态氮素配比(NO3−/NH4+)条件下大蕙兰花生长及氮代谢的影响。
方法
以大花蕙兰580和OMF兰科丝核菌C2y1为研究对象,进行盆栽试验。设置土壤浇灌和不浇灌C2y1,每个处理下分别设3个NO3−/NH4+供应比例,即8∶1 (T1)、1∶1 (T2) 和1∶8 (T3)。测定了处理后大花蕙兰幼苗生长、生物量和根系长度的增加情况,分析了处理后叶片中硝酸还原酶(NR)和谷氨酰胺合成酶(GS)活性,采用PCR法检测C2y1定植情况。
结果
未接种C2y1条件下,T2处理的大花蕙兰植株鲜重增长量及干物质积累量显著高于T1和T3处理,T3处理的根系增长量显著高于T1和T2处理。PCR分析结果证明,土壤浇灌C2y1菌剂后,C2y1可有效侵入大花蕙兰根系,形成共生关系,且随着铵态氮占比的增加,根系C2y1侵染率显著增加。相比于未接种对照,接种C2y1可显著促进各硝铵比处理大花蕙兰茎叶生长和生物量积累,茎叶的最大提升效果出现在T3处理,而最大根系促生效果出现在T1处理;接种C2y1显著提高了茎叶对大量元素(N、P、K)和微量元素(Fe、Zn、Cu)的吸收,茎叶最高N、P、K和Zn含量出现在T3处理,对根系中各元素含量提升效果较小。接种和未接种C2y1条件下,大花蕙兰幼苗的NR活性都随着硝态氮比例的下降而降低,而GS活性正相反,且接种C2y1后各硝铵比处理幼苗的GS活性均显著高于未接种处理。
结论
大花蕙兰比较喜好硝态氮,但是铵态氮可促进其根系与C2y1形成共生体来适应高铵环境。接种兰科丝核菌C2y1促进了大花蕙兰生长及对营养的吸收和运转,且在高铵环境下的促生效应大于高硝态氮环境下。
Abstract:
Objectives
This study is to explore the impact of orchid mycorrhizal fungi (OMF) inoculation on the growth and nitrogen metabolism of Cymbidium hybridum under various NO3−/ NH4+ ratios.
Methods
Cultivar Cymbidium hybridum ‘580’ and OMF C2y1 were used as test materials in a pot experiment. The C2y1 inoculation was carried out by watering into soils during the seedling stage of Cymbidium hybridum, taking water as control group. Under each group, N was supplied in three different NO3−/NH4+ ratios of 8∶1 (T1), 1∶1 (T2), and 1∶8 (T3). The increased growth and biomass weight of the shoot, and the enhanced length of roots of C. hybridum seedlings were measured, the nutrient contents in both shoot and root, and the activities of nitrate reductase (NR) and glutamine synthetase (GS) in leaves were analyzed. PCR method was used to confirm the infection of C2y1 fungi.
Results
Without inoculation, the significantly higher fresh weight growth and dry matter accumulation of C. hybridum were recorded under T2, while the significantly higher root growth was recorded at T3. The PCR results proved the infection of C2y1 on the root of C. hybridum through the soil watering method, and the infection intensity was enhanced with the increase of ammonia nitrogen supply ratio. Compared to the no inoculation control, C2y1 inoculation significantly enhanced shoot growth and biomass accumulation of C. hybridum under various nitrogen form ratios, with the largest promotion on shoot growth under T3 treatment, and the highest promotion on root was under T1 treatment. C2y1 inoculation significantly enhanced the absorption of N, P, K, Fe, Zn, Cu. Notably, with the highest concentrations of N, P, K, and Zn in shoot under T1 ratio, while their concentration in roots were not affected by C2y1 inoculation. The NR activity in C. hybridum seedlings under C2y1 inoculation was positively correlated with the nitrate nitrogen supply ratios, while GS activity was on the contrary.
Conclusions
C. hybridum prefers nitrate to ammonia, however, ammonia is conducive the infection of C2y1, which help C. hybridum to adapt to the soil environment. Inoculation of C2y1 could stimulate the growth and nutrient absorption, and the promotion effect under high ammonia environment is even more obvious.
图 1 不同处理下大花蕙兰的整体根段真菌侵染图像
注:a、b、c分别为NO3−/NH4+为8∶1、1∶1、1∶8,不接菌处理,d、e、f分别为NO3−/NH4+为8∶1、1∶1、1∶8,接菌处理。兰花菌根利用台盼蓝进行染色,使用ImageJ图像处理软件对菌根化的大花蕙兰根系染色照片进行处理。
Figure 1. Fungal infection images of root segments of C. hybridum under different treatments
Note: a, b and c are treatments without C2y1 inoculation, with the NO3−/NH4+ ratios being 8∶1, 1∶1 and 1∶8, respectively; d, e and f are the roots of C. hybridum inoculated with C2y1, with the NO3−/NH4+ ratio is 8∶1, 1∶1 and 1∶8, respectively. The orchid mycorrhizae are stained using trypan blue, and the stained images of the mycorrhizal roots of Cymbidium hybridum are processed using ImageJ image-processing software.
图 2 不同硝铵配比下接种C2y1对大花蕙兰植株和根系生长的影响
注:CK—未接种真菌;C2y1—接种真菌。柱上不同小写字母表示处理间差异显著(P<0.05)。右上角表示双因素方差分析结果,*—P<0.05,***—P<0.001。
Figure 2. Effects of inoculation of C2y1 on the growth of above ground parts and roots of C. hybridum seedlings under different nitrate to ammonia supply ratios
Note: CK—No inoculation control; C2y1—Inoculation of C2y1. Different lowercase letters above the bars indicate significant difference among treatments (P<0.05). Top right are two-way ANOVA output, *—P<0.05; ***—P<0.001.
图 3 不同硝铵比下接种C2y1对大花蕙兰叶绿素含量影响
注:CK—未接种真菌;C2y1—接种真菌。柱上不同小写字母表示处理间差异显著(P<0.05)。
Figure 3. Effects of inoculation of C2y1 on the leaf SPAD of C. hybridum under different nitrate to ammonia supply ratios
Note: CK—No inoculation control; C2y1—Inoculation of C2y1. Different lowercase letters above the bars indicate significant difference among treatments (P<0.05).
图 4 不同硝铵配比下接种C2y1对大花蕙兰幼苗养分含量的影响
注:CK—未接种真菌;C2y1—接种真菌。图中不同小写字母表示同一部分处理间差异显著(P<0.05)。
Figure 4. Effects of inoculation of C2y1 on the nutrient concentrations of C. hybridum seedlings under different nitrate to ammonia supply ratios
Note: CK—No inoculation control; C2y1—Inoculation of C2y1. Different lowercase letters in the Fig. indicate significant difference in the element concentrations of the same part among treatments (P<0.05).
图 5 不同硝铵配比下接种C2y1对大花蕙兰幼苗叶片硝酸还原酶和谷氨酰胺合成酶活性的影响
注:CK—未接种真菌;C2y1—接种真菌。柱上不同小写字母表示6个处理间差异显著(P<0.05)。
Figure 5. Effects of C2y1 inoculation on the activities of nitrate reductase (NR) and glutamine synthetase (GS) in the leaves of C. hybridum seedlings under different nitrate to ammonia nitrogen ratios
Note: CK—No inoculation control; C2y1—Inoculation of C2y1. Different lowercase letters above the bars indicate significant difference among the 6 treatments (P<0.05).
图 6 巢氏PCR产物电泳图
注:图(a)为用ITS1/ITS4引物扩增菌根的ITS效果,图(b)为各菌根ITS PCR产物用CITS扩增效果。M为标准,A、B、C分别为未接种处理下NO3−/NH4+为8∶1、1∶1和1∶8处理的菌根,D、E、F分别为接种C2y1处理下8∶1、1∶1和1∶8处理的菌根。
Figure 6. Electrophoretic diagram of nested PCR product
Note: Figure (a) shows the ITS amplification effect of mycorrhiza using the ITS1/ITS4 primer, and (b) shows the CITS amplification effect of ITS PCR products of mycorrhiza. M is marker; A, B, and C are the roots of C. hybridum seedlings without C2y1 inoculation under NO3−/NH4+ ratios of 8∶1, 1∶1, and 1∶8, respectively, and D, E, and F are the roots of C. hybridum seedlings with C2y1 inoculation under NO3−/NH4+ ratios of 8 : 1, 1∶1, and 1∶8, respectively.
表 1 改良的霍格兰营养液配方
Table 1 The formula of modified Hoagland nutrient solution
大量元素表 2 不同硝铵比下接种C2y1对大花蕙兰生物量及根系菌根侵染率的影响
Table 2 Effects of C2y1 inoculation on the biomass and root fungal infection rate of C. hybridum seedlings under different nitrate to ammonia supply ratios
处理 Treatment生物量 Biomass (g/plant)根系侵染强度 (%)Ji Z, Chen X Q. Orchids in China[M]. Beijing: China Forestry Press, 1998.
[2]Splivallo R, Fischer U, Göbel C, et al. Truffles regulate plant root morphogenesis via the production of auxin and ethylene[J]. Plant Pathology, 2009, 150(4): 2018−2029.
[3]Martínez-Medina A, Appels F, van Wees S. Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78[J]. Plant Signaling & Behavior, 2017, 12(8): e1345404.
[4]Evangelina Q A, Rincon Enriquez E, Hernandez-Cuevas G, et al. Influence of arbuscular mycorrhizal fungi and nitrogen concentrations on Carica papaya plant growth[J]. International Journal of Agriculture and Biology, 2015, 17(1): 119−126.
[5]Huang W, Zheng Z C, Hua D, et al. Adaptive responses of carbon and nitrogen metabolisms to nitrogen-deficiency in Citrus sinensis seedlings[J]. BMC Plant Biology, 2022, 22(1): 370. DOI: 10.1186/s12870-022-03759-7
[6]Qin J, Yue X L, Fang S Z, et al. Responses of nitrogen metabolism, photosynthetic parameter and growth to nitrogen fertilization in Cyclocarya paliurus[J]. Forest Ecology and Management, 2021, 502(12): 119715.
[7]Cameron D D, Leake J R, Read D J. Mutualistic mycorrhiza in Orchids: Evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens[J]. New Phytologist, 2006, 171(2): 405−416. DOI: 10.1111/j.1469-8137.2006.01767.x
[8]Trudell S A, Rygiewicz P T , Edmonds R L. Nitrogen and carbon stable isotope abundances support the myco-heterotrophic nature and host-specificity of certain achlorophyllous plants[J]. New Phytologist, 2003, 160(2): 391-401.
[9]Wang Y, Chang Y A. Effects of nitrogen and the various forms of nitrogen on phalaenopsis orchid: A review[J]. HortTechnology, 2017, 27(2): 144−149. DOI: 10.21273/HORTTECH03204-16
[10]Esteban R, Ariz I, Cruz C, Moran J F. Review: Mechanisms of ammonium toxicity and the quest for tolerance[J]. Plant Science, 2016, 248: 92−101. DOI: 10.1016/j.plantsci.2016.04.008
[11]Suh J N, Ohkawa K, Kwack B H. Senescence symptoms after emasculation vary among Cymbidium cultivars[J]. HortScience, 1998, 33(4): 734−735. DOI: 10.21273/HORTSCI.33.4.734
[12] 刘舒, 陈春黎, 刘敏, 等. 两种内生真菌对大花蕙兰的共生效应比较[J]. 华中农业大学学报, 2016, 35(1): 43−49.Liu S, Chen C L, Liu M, et al. Comparing the symbiotic effects of two endophytes on growth of Cymbidiumhy bridum[J]. Journal of Huazhong Agricultural University, 2016, 35(1): 43−49.
[13] 邹琦, 植物生理生化实验指导[M]. 北京: 中国农业出版社, 1995.Zou Q. Plant physiology and biochemistry experiment[M]. Beijing: China Agriculture Press, 1995.
[14]Liu S, Liu M, Liao Q G, et al. Effects of inoculated mycorrhizal fungi and non-mycorrhizal beneficial micro-organisms on plant traits, nutrient uptake and root-associated fungal community composition of the Cymbidium hybridum in greenhouse[J]. Journal of Applied Microbiology, 2021, 131(1): 413−424. DOI: 10.1111/jam.14967
[15] 汪鹞雄, 李全, 沈益康, 等. 模拟氮沉降对杉木丛枝菌根真菌侵染率和球囊霉素的影响[J]. 生态学报, 2021, 41(1): 194−201.Wang Y X, Li Q, Shen Y K, et al. Effects of nitrogen deposition on arbuscular mycorrhizal fungal colonization and glomalin-related soil protein of Chinese fir[J]. Acta Ecologica Sinica, 2021, 41(1): 194−201.
[16]Wu J, Ma H C, Xu X L, et al. Mycorrhizas alter nitrogen acquisition by the terrestrial orchid Cymbidium goeringii[J]. Annals of Botany, 2013, 111(6): 1181−1187. DOI: 10.1093/aob/mct062
[17] 栾添. 氮磷钾营养对大花蕙兰三个品种幼苗生长的影响[D]. 北京: 北京林业大学硕士学位论文, 2011.Luan T. Effects of nitrogen, phosphorus and potassium nutrition on seedling growth of three Cymbidium cultivars[D]. Beijing: MS Thesis of Beijing Forestry University, 2011.
[18] 李英男, 杨秀珍, 栾添, 王四清. 铵态氮和硝态氮比例对大花蕙兰幼苗生长的影响[A]. 2010年全国观赏园艺学术年会论文集[C]. 北京: 中国建筑工业出版社, 2010.Li Y N, Yang X Z, Luan T, Wang S Q. Effects of ammonium nitrogen and nitrate nitrogen rates on vegetation growth of cymbidium seedling[A]. Proceedings of the 2010 national conference on ornamental horticulture [C]. Beijing: China Architecture & Building Press, 2010.
[19] 朱哲燕, 鲍一丹, 黄敏, 冯雷. 油菜叶绿素与氮含量关系的试验研究[J]. 浙江大学学报(农业与生命科学版), 2006, 32(2): 152−154.Zhu Z Y, Bao Y D, Huang M, Feng L. Study of the relationship between the chiorophyll and the nitrogen content of oilseed rapes[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2006, 32(2): 152−154.
[20] 曹翠玲, 李生秀. 氮素形态对作物生理特性及生长的影响[J]. 华中农业大学学报, 2004, 23(5): 581−586.Cao C L, Li S X. Effect of N form on crop physiological characteristics and growth[J]. Journal of Huazhong Agricultural University, 2004, 23(5): 581−586.
[21] 邓胤, 申鸿, 罗文倩, 郭涛. 不同氮素形态比例条件下接种AMF对玉米氮同化关键酶的影响[J]. 植物营养与肥料学报, 2009, 15(6): 1380−1385.Deng Y, Shen H, Luo W Q, Guo T. Effects of AMF on key enzymes of nitrogen assimilation in maize under different ammonium to nitrate ratios[J]. Journal of Plant Nutrition and Fertilizers, 2009, 15(6): 1380−1385.
[22] 冯万军, 邢国芳, 牛旭龙, 等. 植物谷氨酰胺合成酶研究进展及其应用前景[J]. 生物工程学报, 2015, 31(9): 1301−1312.Feng W J, Xing G F, Niu X L, et al. Progress and application prospects of glutamine synthase in plants[J]. Journal of Bioengineering, 2015, 31(9): 1301−1312.
[23]Orsel M, Krapp A, Daniel-Vedele F. Analysis of the NRT2 nitrate transporter family in Arabidopsis. Structure and gene expression[J]. Plant Physiology, 2002, 129(2): 886−896. DOI: 10.1104/pp.005280
相关知识
丛枝菌根真菌(AMF)对植物养分吸收影响研究进展
丛枝菌根真菌(AMF)对植物养分吸收影响研究进展.doc
不同培养条件对兰花菌根真菌生长的影响
不同丛枝菌根真菌对长春花生长和养分吸收的影响
兰花菌根影响养分吸收及生长的研究
菌根真菌接种对盆栽杜鹃花生长的影响
氮源对杜鹃花菌根真菌氮吸收及硝酸还原酶活性的影响
铵态氮和硝态氮对矮牵牛生长发育及花瓣氨基酸代谢的影响
不同菌根类型林分土壤胞外酶活性及影响因素
丛枝菌根真菌对小麦生长的影响
网址: 接种兰科菌根真菌对不同硝铵比条件下大花蕙兰生长、养分吸收及氮代谢的影响 https://m.huajiangbk.com/newsview2011259.html
上一篇: Effects of nitra |
下一篇: 硝酸盐缓解油菜铵毒害的生理机制 |