[1] Wang Y Y, Cheng Y H, Chen K E, Tsay Y F.Nitrate transport, signaling, and use efficiency[J]. Annual Review of Plant Biology, 2018, 69(1): 85-122
[2] Krapp A, David L C, Chardin C, Girin T, Marmagne A, Leprince A S, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F.Nitrate transport and signalling in
[J]. Journal of Experimental Botany, 2014, 65(3): 789-798
[3] Wang Y Y, Hsu P K, Tsay Y F.Uptake, allocation and signaling of nitrate[J]. Trends in Plant Science, 2012, 17(8): 458-467
[4] Hsu P K, Tsay Y F.Two phloem nitrate transporters, NRT1.11 and NRT1.12, are important for redistributing xylem-borne nitrate to enhance plant growth[J]. Plant Physiology, 2013, 163(2): 844-856
[5] Léran S, Edel K H, Pervent M, Hashimoto K, Corratgé-Faillie C, Offenborn J N, Tillard P, Gojon A, Kudla J, Lacombe B. Nitratesensing and uptake in
are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid[J]. Science Signaling, 2015, 8(375): ra43
[6] Liu K H, Tsay Y F.Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation[J]. Embo Journal, 2003, 22(5): 1005-1013
[7] Kotur Z, Mackenzie N, Ramesh S, Tyerman S D, Kaiser B N, Glass A D.Nitrate transport capacity of the
NRT2 family members and their interactions with
AtNAR2.1[J]. New Phytologist, 2012, 194(4): 724-731
[8] Feng H M, Yan M, Fan X R, Li B Z, Shen Q R, Miller A J, Xu G H.Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status[J]. Journal of Experimental Botany, 2011, 62(7): 2319-2332
[9] Segonzac C, Boyer J C, Ipotesi E, Szponarski W, Tillard P, Touraine B, Sommerer N, Rossignol M, Gibrat R.Nitrate efflux at the root plasma membrane: Identification of an
excretion transporter[J]. The Plant Cell, 2007, 19(11): 3760-3777
[10] Kanno Y, Kamiya Y, Seo M.Nitrate does not compete with abscisic acid as a substrate of
4.6
/NRT1.2
/AIT1 in
Arabidopsis[J]. Plant Signaling & Behavior, 2013, 8(12): e26624
[11] Ho C H, Lin S H, Hu H C, Tsay Y F.CHL1 functions as a nitrate sensor in plants[J]. Cell, 2009, 138(6): 1184-1194
[12] Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A.Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants[J]. Developmental Cell, 2010, 18(6): 927-937
[13] Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C.Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies[J]. Nature Genetics, 2015, 47(7): 834-838
[14] Morère-Le Paven M C, Viau L, Hamon A, Vandecasteele C, Pellizzaro A, Bourdin C, Laffont C, Lapied B, Lepetit M, Frugier F, Legros C, Limami A M. Characterization of a dual-affinity nitrate transporter MtNRT1.3 in the model legume
[J]. Journal of Experimental Botany, 2011, 62(15): 5595-5605
[15] Cerezo M, Tillard P, Filleur S, Muños S, Daniel-Vedele F, Gojon A.Major alterations of the regulation of root NO-3 uptake are associated with the mutation of
2.1 and
Nrt2.2 genes in
Arabidopsis[J]. Plant Physiology, 2001, 127(1): 262-271
[16] Menz J, Li Z, Schulze W X, Ludewig U.Early nitrogen-deprivation responses in
roots reveal distinct differences on transcriptome and (phospho-) proteome levels between nitrate and ammonium nutrition[J]. The Plant Journal, 2016, 88(5): 717-734
[17] Lezhneva L, Kiba T, Feria-Bourrellier A B, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel-Vedele F, Krapp A. The
nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants[J].The Plant Journal, 2014, 80(2): 230-241
[18] Lin S H, Kuo H F, Canivenc G, Lin C S, Lepetit M, Hsu P K, Tillard P, Lin H L, Wang Y Y, Tsai C B, Gojon A, Tsay Y F.Mutation of the
NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport[J]. Plant Cell, 2008, 20(9): 2514-2528
[19] Li J Y, Fu Y L, Pike S M, Bao J, Tian W, Zhang Y, Chen C Z, Zhang Y, Li H M, Huang J, Li L G, Schroeder J Ⅰ, Gassmann W, Gong J M.The
nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance[J]. Plant Cell, 2010, 22(5): 1633-1646
[20] Zhang G B, Yi H Y, Gong J M.The
ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation[J]. Plant Cell, 2014, 26(10): 3984-3998
[21] Taochy C, Gaillard Ⅰ, Ipotesi E, Oomen R, Leonhardt N, Zimmermann S, Peltier J B, Szponarski W, Simonneau T, Sentenac H, Gibrat R, Boyer J C.The
root stele transporter NPF2.3 contributes to nitrate translocation to shoots under salt stress[J].The Plant Journal, 2015, 83(3): 466-479
[22] Li Y G, Ouyang J, Wang Y Y, Hu R, Xia K F, Duan J, Wang Y Q, Tsay Y F, Zhang M Y.Disruption of the rice nitrate transporter OsNPF2.2 hinders root-to-shoot nitrate transport and vascular development[J]. Scientific Reports, 2015, 5: 9635
[23] Wang Y Y, Tsay Y F.
nitrate transporter NRT1.9 is important in phloem nitrate transport[J]. Plant Cell, 2011, 23(5): 1945-1957
[24] Chiu C C, Lin C S, Hsia A P, Su R C, Lin H L, Tsay Y F.Mutation of a nitrate transporter, AtNRT1.4, results in a reduced petiole nitrate content and altered leaf development[J]. Plant Cell Physiology, 2004, 45(5): 1139-1148
[25] Fan S C, Lin C S, Hsu P K, Lin S H, Tsay Y F.The
nitrate transporter NRT1.7, expressed in phloem, is responsible for source-to-sink remobilization of nitrate[J]. Plant Cell, 2009, 21(9): 2750-2761
[26] He Y N, Peng J S, Cai Y, Liu D F, Guan Y, Yi H Y, Gong J M.Tonoplast-localized nitrate uptake transporters involved in vacuolar nitrate efflux and reallocation in
[J]. Scientific Reports, 2017, 7(1): 6417
[27] Almagro A, Lin S H, Tsay Y F.Characterization of the
nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development[J]. Plant Cell, 2008, 20(12): 3289-3299
[28] Chopin F, Orsel M, Dorbe M F, Chardon F, Truong H N, Miller A J, Krapp A, Daniel-Vedele F.The
ATNRT2.7 nitrate transporter controls nitrate content in seeds[J]. Plant Cell, 2007, 19(5): 1590-1602
[29] Guo F Q, Young J, Crawford N M.The nitrate transporter
1.1 (
CHL1) functions in stomatal opening and contributes to drought susceptibility in
Arabidopsis[J]. Plant Cell, 2003, 15(1): 107-117
[30] lvarezAr-agón R, Rodríguez-Navarro A. Nitrate-dependent shoot sodium accumulation and osmotic functions of sodium in
under saline conditions[J].The Plant Journal, 2017, 91(2): 208-219
[31] Li B, Qiu J E, Jayakannan M, Xu B, Li Y, Mayo G M, Tester M, Gilliham M, Roy S J.
2.5 modulates chloride (Cl-) efflux from roots of
Arabidopsis thaliana[J]. Frontiers in Plant Science, 2017, 7: 2013
[32] Tal Ⅰ, Zhang Y, Jørgensen M E, Pisanty O, Barbosa Ⅰ C, Zourelidou M, Regnault T, Crocoll C, Olsen C E, Weinstain R, Schwechheimer C, Halkier B A, Nour-Eldin H H, Estelle M, Shani E. The
NPF3 protein is a GA transporter[J]. Nature Communications, 2016, 7: 11486
[33] Ishimaru Y, Oikawa T, Suzuki T, Takeishi S, Matsuura H, Takahashi K, Hamamoto S, Uozumi N, Shimizu T, Seo M, Ohta H, Ueda M.GTR1 is a jasmonic acid and jasmonoyl-l-isoleucine transporter in
[J]. Bioscience, Biotechnology, and Biochemistry, 2017, 81(2): 249-255
[34] Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, Kamiya Y, Seo M.Identification of
NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones[J]. Journal of Plant Research, 2015, 128(4): 679-686
[35] Wege S, Jossier M, Filleur S, Thomine S, Barbier-Brygoo H, Gambale F, Angeli A D.The proline 160 in the selectivity filter of the
NO3-/H+ exchanger AtCLCa is essential for nitrate accumulation in planta[J].The Plant Journal, 2010, 63(5): 861-869
[36] von der Fecht-Bartenbach J, Bogner M, Dynowski M, Ludewig U. CLC-b-mediated NO3-/H+ exchange across the tonoplast of
vacuoles[J]. Plant and Cell Physiology, 2010, 51(6): 960-968
[37] Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K.CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells[J]. Nature, 2008, 452(7186): 483-486
[38] Schäfer N, Maierhofer T, Herrmann J, Jørgensen M E, Lind C, von Meyer K, Lautner S, Fromm J, Felder M, Hetherington A M, Ache P, Geiger D, Hedrich R. A tandem amino acid residue motif in guard cell SLAC1 anion channel of grasses allows for the control of stomatal aperture by nitrate[J]. Current Biology, 2018, 28(9): 1370-1379
[39] Vahisalu T, Kollist H, Wang Y F, Nishimura N, Chan W Y, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder J Ⅰ, Kangasjärvi J.SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling[J]. Nature, 2008, 452(7186): 487-491
[40] Geiger D, Maierhofer T, Al-Rasheid K A, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten Ⅰ, Grill E, Romeis T, Hedrich R. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1[J]. Science Signaling, 2011, 4(173): ra32
[41] Qi G N, Yao F Y, Ren H M, Sun S J, Tan Y Q, Zhang Z C, Qiu B S, Wang Y F.The S-Type Anion Channel ZmSLAC1 Plays Essential Roles in Stomatal Closure by Mediating Nitrate Efflux in Maize[J]. Plant and Cell Physiology, 2018, 59(3): 614-623
[42] Hu H C, Wang Y Y, Tsay Y F.AtCIPK8, a CBL-interacting protein kinase, regulates the low-affinity phase of the primary nitrate response[J].The Plant Journal, 2009, 57(2): 264-278
[43] Mounier E, Pervent M, Ljung K, Gojon A, Nacry P.Auxin-mediated nitrate signalling by NRT1.1 participates in the adaptive response of
root architecture to the spatial heterogeneity of nitrate availability[J]. Plant, Cell & Environment, 2014, 37(1): 162-174
[44] Krouk G.Nitrate signalling: Calcium bridges the nitrate gap[J]. Nature Plants, 2017, 3: 17095
[45] Riveras E, Alvarez J M, Vidal E A, Oses C, Vega A, Gutiérrez R A.The calcium ion is a second messenger in the nitrate signaling pathway of
[J]. Plant Physiology, 2015, 169(2): 1397-1404
[46] Liu K H, Niu Y J, Konishi M, Wu Y, Du H, Sun Chung H, Li L, Boudsocq M, McCormack M, Maekawa S, Ishida T, Zhang C, Shokat K, Yanagisawa S, Sheen J. Discovery of nitrate-CPK-NLP signalling in central nutrient-growth networks[J]. Nature, 2017, 545(7654): 311-316
[47] Castaings L, Camargo A, Pocholle D, Gaudon Ⅴ, Texier Y, Boutet-Mercey S, Taconnat L, Renou J P, Daniel-Vedele F, Fernandez E, Meyer C, Krapp A.The nodule inception-like protein 7 modulates nitrate sensing and metabolism in
[J].The Plant Journal, 2009, 57(3): 426-435
[48] Marchive C, Roudier F, Castaings L, Bréhaut Ⅴ, Blondet E, Colot Ⅴ, Meyer C, Krapp A.Nuclear retention of the transcription factor NLP7 orchestrates the early response to nitrate in plants[J]. Nature Communications, 2013, 4: 1713
[49] Konishi M, Yanagisawa S.The role of protein-protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression[J]. BMC Plant Biology, 2019, 19(1): 90
[50] Guan P, Ripoll J J, Wang R, Vuong L, Bailey-Steinitz L J, Ye D, Crawford N M. Interacting TCP and NLP transcription factors control plant responses to nitrate availability[J]. Proceedings of the National Academy of Sciences of USA, 2017, 114(9): 2419-2424
[51] Yan D W, Easwaran Ⅴ, Chau Ⅴ, Okamoto M, Ierullo M, Kimura M, Endo A, Yano R, Pasha A, Gong Y C, Bi Y M, Provart N, Guttman D, Krapp A, Rothstein S J, Nambara E.NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in
[J]. Nature Communications, 2016, 7: 13179
[52] Xu N, Wang R C, Zhao L F, Zhang C F, Li Z H, Lei Z, Liu F, Guan P Z, Chu Z H, Crawford N M, Wang Y.The
NRG2 protein mediates nitrate signaling and interacts with and regulates key nitrate regulators[J]. Plant Cell, 2016, 28(2): 485-504
[53] Medici A, Krouk G.The primary nitrate response: A multifaceted signalling pathway[J]. Journal of Experimental Botany, 2014, 65(19): 5567-5576
[54] Olas J J, Van Dingenen J, Abel C, Działo M A, Feil R, Krapp A, Schlereth A, Wahl Ⅴ.Nitrate acts at the
shoot apical meristem to regulate flowering time[J]. New Phytologist, 2019, 223(2): 814-827
[55] Liu F, Xu Y R, Chang K X, Li S N, Liu Z G, Qi S D, Jia J B, Zhang M, Crawford N M, Wang Y.The long noncoding RNA
5120 regulates nitrate response and assimilation in
Arabidopsis[J]. New Phytologist, 2019, 224(1): 117-131
[56] Alvarez J M, Riveras E, Vidal E A, Gras D E, Contreras-López O, Tamayo K P, Aceituno F, Gómez Ⅰ, Ruffel S, Lejay L, Jordana X, Gutiérrez R A.Systems approach identifies TGA1 and TGA4 transcription factors as important regulatory components of the nitrate response of
roots[J].The Plant Journal, 2014, 80(1): 1-13
[57] Canales J, Contreras-Lopez O, Álvarez J M, Gutiérrez R A.Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in
[J].The Plant Journal, 2017, 92(2): 305-316
[58] Vidal E A, Moyano T C, Riveras E, Contreras-Lopez O, Gutierrez R A.Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of
roots[J]. Proceedings of the National Academy of Sciences of USA, 2013, 110(31): 12840-12845
[59] Medici A, Marshall-Colon A, Ronzier E, Szponarski W, Wang R, Gojon A, Crawford N M, Ruffel S, Coruzzi G M, Krouk G.AtNIGT1/HRS1 integrates nitrate and phosphate signals at the
root tip[J]. Nature Communications, 2015, 6: 6274
[60] Huang S J, Liang Z H, Chen S, Sun H W, Fan X R, Wang C L, Xu G H, Zhang Y L.A Transcription factor, OsMADS57, regulates long-distance nitrate transport and root elongation[J]. Plant Physiology, 2019, 180(2): 882-895
[61] 丁庆倩, 王小婷, 胡利琴, 齐欣, 葛林豪, 徐伟亚, 徐兆师, 周永斌, 贾冠清, 刁现民, 闵东红, 马有志, 陈明. 谷子MYB类转录因子
42提高转基因拟南芥低氮胁迫耐性[J]. 遗传, 2018, 40(4): 327-338
[62] Okamoto S, Shinohara H, Mori T, Matsubayashi Y, Kawaguchi M.Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase[J]. Nature Communications, 2013, 4: 2191
[63] Soyano T, Hirakawa H, Sato S, Hayashi M, Kawaguchi M.Nodule inception creates a long-distance negative feedback loop involved in homeostatic regulation of nodule organ production[J]. Proceedings of the National Academy of Sciences of USA, 2014, 111(40): 14607-14612
[64] Ohkubo Y, Tanaka M, Tabata R, Ogawa-Ohnishi M, Matsubayashi Y.Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition[J]. Nature Plants, 2017, 3: 17029
[65] Araya T, Miyamoto M, Wibowo J, Suzuki A, Kojima S, Tsuchiya Y N, Sawa S, Fukuda H, von Wirén N, Takahashi H. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner[J]. Proceedings of the National Academy of Sciences of USA, 2014, 111(5): 2029-2034
[66] Zhang J Y, Liu Y X, Zhang N, Hu B, Jin T, Xu H R, Qin Y, Yan P X, Zhang X N, Guo X X, Hui J, Cao S Y, Wang X, Wang C, Wang H, Qu B Y, Fan G Y, Yuan L X, Garrido-Oter R, Chu C C, Bai Y.NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37(6): 676-684
[67] Fan X R, Tang Z, Tan Y W, Zhang Y, Luo B B, Yang M, Lian X M, Shen Q R, Miller A J, Xu G H.Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields[J]. Proceedings of the National Academy of Sciences of USA, 2016, 113(26): 7118-7123
[68] Fang Z M, Bai G X, Huang W T, Wang Z X, Wang X L, Zhang M Y.The rice peptide transporter OsNPF7.3 is induced by organic nitrogen, and contributes to nitrogen allocation and grain yield[J]. Frontiers in Plant Science, 2017, 8: 1338
[69] Brauer E K, Rochon A, Bi Y M, Bozzo G G, Rothstein S J, Shelp B J.Reappraisal of nitrogen use efficiency in rice overexpressing glutamine synthetase1[J]. Plant Physiology, 2011, 141(4): 361-372
[70] Yu L H, Wu J, Tang H, Yuan Y, Wang S M, Wang Y P, Zhu Q S, Li S G, Xiang C B.Overexpression of
7 improves plant growth under both nitrogen-limiting and -sufficient conditions by enhancing nitrogen and carbon assimilation[J]. Scientific Reports, 2016, 6: 27795
[71] He X, Qu B Y, Li W J, Zhao X Q, Teng W, Ma W Y, Ren Y Z, Li B, Li Z S, Tong Y P.The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield[J]. Plant Physiology, 2015, 169(3): 1991-2005
[72] Qu B Y, He X, Wang J, Zhao Y Y, Teng W, Shao A, Zhao X Q, Ma W Y, Wang J Y, Li B, Li Z S, Tong Y P.A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input[J]. Plant Physiology, 2015, 167(2): 411-423
[73] Xia T M, Xiao D, Liu D, Chai W T, Gong Q Q, Wang N N.Heterologous expression of
8
cfrom soybean confers tolerance to nitrogen deficiency and increases yield in
Arabidopsis[J]. PLoS One, 2012, 7(5): e37217
[74] Zhong L, Chen D D, Min D H, Li W W, Xu Z S, Zhou Y B, Li L C, Chen M, Ma Y Z.AtTGA4, a bZIP transcription factor, confers drought resistance by enhancing nitrate transport and assimilation in
[J]. Biochemical and Biophysical Research Communications, 2015, 457(3): 433-439
[75] Yang D Q, Cai T, Luo Y L, Wang Z L.Optimizing plant density and nitrogen application to manipulate tiller growth and increase grain yield and nitrogen-use efficiency in winter wheat[J]. the Journal of Life and Environmental Sciences, 2019, 7: e6484
[76] 何梦迪, 钟宣伯, 周启政, 崔楠, 汪桂凤, 马武军, 唐桂香. 氮肥缓解苗期干旱对小麦根系形态建成及生理特性的影响[J]. 核农学报, 2019, 33(11): 2246-2253
[77] 郭增鹏, 董坤, 朱锦惠, 董艳. 施氮和间作对蚕豆锈病发生及田间微气候的影响[J]. 核农学报, 2019, 33(11): 2294-2302
[78] 刘宇辉, 张晴雯, 田秀平, 张爱平, 刘杏认, 杨正礼. 化肥减量配施菌肥对氮素矿化利用的影响[J]. 核农学报, 2019, 33(8): 1593-1601
[79] Yang G Z, Chu K Y, Tang H Y, Nie Y C, Zhang X L.Fertilizer15N accumulation, recovery and distribution in cotton plant as affected by N rate and split[J]. Journal of Integrative Agriculture, 2013, 12(6): 999-1007
[80] Singh B N, Dwivedi P, Sarma B K, Singh G S, Singh H B.A novel function of N-signaling in plants with special reference to
interaction influencing plant growth, nitrogen use efficiency, and cross talk with plant hormones[J]. 3 Biotech, 2019, 9(3): 109
相关知识
植物硝态氮吸收和转运的调控研究进展
植物对硝态氮的吸收、同化及其含量测定
植物硝态氮检测|茁彩生物
植物对铵态氮和硝态氮的吸收同化机理简介
铵态氮调控菜心氮素吸收的分子机制.pdf
植物氮素吸收、运转和分配调控机制研究
菊花基因组DNA甲基化水平对根系硝态氮吸收的影响
植物吸收转运硝态氮及其信号调控研究进展
植物硝态氮检测
植物生理学实验硝态氮wya.ppt
网址: 植物吸收转运硝态氮及其信号调控研究进展 https://m.huajiangbk.com/newsview2011268.html
上一篇: 植物硝态氮吸收和转运的调控研究进 |
下一篇: “氮”对柑橘很重要!缺氮与氮过量 |