ZHANG Y T, HOU K, QIAN H, GAO Y Y, FANG Y, XIAO S, TANG S Q, ZHANG Q Y, QU W G, REN W H. Characterization of soil salinization and its driving factors in a typical irrigation area of northwest China[J]. Science of the Total Environment, 2022, 837: 155808. DOI: 10.1016/j.scitotenv.2022.155808.
[2] 杨劲松, 姚荣江, 王相平, 谢文萍, 张新, 朱伟, 张璐, 孙瑞娟. 中国盐渍土研究: 历程、现状与展望[J]. 土壤学报, 2022, 59(1): 10-27. DOI: 10.11766/trxb202110270578.YANG J S, YAO R J, WANG X P, XIE W P, ZHANG X, ZHU W, ZHANG L, SUN R J. Research on salt-affected soils in China: History, status and prospect[J]. Acta Pedologica Sinica, 2022, 59(1): 10-27. DOI: 10.11766/trxb202110270578.
[3] 云雪雪, 陈雨生. 国际盐碱地开发动态及其对我国的启示[J]. 国土与自然资源研究, 2020, 1: 84-87. DOI: 10.16202/j.cnki.tnrs.2020.01.020.YUN X X, CHEN Y S. International development of saline-alkali land and its enlightenment to China[J]. Territory & Natural Resources Study, 2020, 1: 84-87. DOI: 10.16202/j.cnki.tnrs.2020.01.020.
[4]PARK H J, KIM W Y, YUN D J. A new insight of salt stress signaling in plant[J]. Molecular Cells, 2016, 39(6): 447-459. DOI: 10.14348/molcells.2016.0083.
[5]CHEESEMAN J M, The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions[J]. New Phytologist, 2015, 206(2): 557-570. DOI: 10.1111/nph.13217.
[6] 崔纪超, 中奕, 钟玉扬, 余金姜, 武小霞. 不同甘薯品种苗期耐盐性试验[J]. 广东农业科学, 2020, 47(4): 1-7. DOI: 10.16768/j.issn.1004-874X.2020.04.001.CUI J C, ZHONG Y, ZHONG Y Y, YU J J, WU X X. Salt tolerance trial of different sweet potato varieties at seedling stage[J]. Guangdong Agricultural Sciences, 2020, 47(4): 1-7. DOI: 10.16768/j.issn.1004-874X.2020.04.001.
[7] 詹振楠, 王文娟. 种子引发对盐胁迫枸杞种子萌发的影响[J]. 广东农业科学, 2018, 45(6): 14-18. DOI: 10.16768/j.issn.1004-874X.2018.06.003.ZHAN Z N, WANG W J. Effects of seed priming on Lycium barbarum seed germination under salt stress[J]. Guangdong Agricultural Sciences, 2018, 45(6): 14-18. DOI: 10.16768/j.issn.1004-874X.2018.06.003.
[8] 肖京林, 覃美, 凌桂芝, 黎晓峰. 植物细胞壁对有害金属与盐分耐受性作用研究进展[J]. 广东农业科学, 2020, 47(9): 73-80. DOI: 10.16768/j.issn.1004-874X.2020.09.010.XIAO J L, QIN M, LING G Z, LI X F. Advances in studies on the resistance of plant cell walls to harmful metals and salt[J]. Guangdong Agricultural Sciences, 2020, 47(9): 73-80. DOI: 10.16768/j.issn.1004-874X.2020.09.010.
[9]GE Z, DRESSELHAUS T, QU L J. How CrRLK1L receptor complexes perceive RALF signal[J]. Trends in Plant Science, 2019, 24(11): 978-981. DOI: 10.1016/j.tplants.2019.09.002.
[10]HARUTA M, SABAT G, STECKER K, MINKOFF B B, SUSSMAN M R. A peptide hormone and its receptor protein kinase regulate plant cell expansion[J]. Science, 2014, 343(6169): 408-11. DOI: 10.1126/science.1244454.
[11]STEGMANN M, MONAGHAN J, SMAKOWSKA-LUZAN E, ROVENICH H, LEHNER A, HOLTON N, BELKHADIR Y, ZIPFEL C. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling[J]. Science, 2017, 355(6322): 287-289. DOI: 10.1126/science.aal2541.
[12]ZHAO C, ZAYED O, YU Z, JIANG W, ZHU P, HSU C C, ZHANG L, TAO W A, LOZANO-DURAN R, ZHU J K. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(51): 13123-13128. DOI: 10.1073/pnas.1816991115.
[13]ZHOU H P, XIAO F, ZHENG Y, LIU G, ZHUANG Y, WNAG Z, ZHANG Y, HE J, FU C, LIN H H. PAMP-INDUCED SECRETED PEPTIDE 3 modulates salt tolerance through RECEPTOR-LIKE KINASE 7 in plants[J]. The Plant Cell, 2022, 34: 927-944. DOI: 10.1093/plcell/koab292.
[14]ZHANG S S, SUN L, DONG X, LU S J, TIAN W, LIU J X. Cellulose synthesis genes CESA6 and CSI1 are important for salt stress tolerance in Arabidopsis[J]. Journal of Integrative Plant Biology, 2016, 58(7): 623-626. DOI: 10.1111/jipb.12442.
[15]ENDLER A, KESTEN C, SCHNEIDER R, ZHANG Y, IVAKOV A, FROEHLICH A, FUNKE N, PERSSON S. A mechanism for sustained cellulose synthesis during salt stress[J]. Cell, 2015, 162(6): 1353-1364. DOI: 10.1016/j.cell.2015.08.028.
[16]VAN DER DOES D, BOUTROT F, ENGELSDORF T, RHODES J, MCKENNA J F, VERNHETTES S, KOEVOETS I, TINTOR N, VEERABAGU M, MIEDES E, SEGONZAC C, ROUX M, BREDA A S, HARDTKE C S, MOLINA A, REP M, TESTERINK C, MOUILLE G, HOFTE H, HAMANN T, ZIPFEL C. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing, root growth and response to abiotic and biotic stresses[J]. PLoS Genetics, 2017, 13(6): e1006832. DOI: 10.1371/journal.pgen.1006832.
[17]HEMATY K, SADO P E, VAN TUINEN A, ROCHANGE S, DESNOS T, BALZERGUE S, PELLETIER S, RENOU J P, HOFTE H. A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis[J]. Current Biology, 2007, 17(11): 922-931. DOI: 10.1016/j.cub.2007.05.018.
[18]YAN J W, LIU Y, YANG L, HE H, HUANG Y, FANG L, SCHELLER H V, JIANG M Y, ZHANG A Y. Cell wall β-1,4-galactan regulated by BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana[J]. Molecular Plant, 2021, 14(3): 411-425. DOI: 10.1016/j.molp.2020.11.023.
[19]YAN J W, LIU Y, YAN J W, LIU Z H, LOU H Q, WU J S. The salt-activated CBF1/CBF2/CBF3-GALS1 module fine-tunes galactan-induced salt hypersensitivity in Arabidopsis[J]. Journal of Integrative Plant Biology, 2023, 65(8): 1904-1917. DOI: 10.1111/jipb.13501.
[20]KIM H J, TRIPLETT B. Involvement of extracellular Cu/Zn superoxide dismutase in cotton fiber primary and secondarycell wall biosynthesis[J]. Plant Signaling Behavior, 2008, 3 (12): 1119-1121. DOI: 10.4161/psb.3.12.7039.
[21]LI Y X, ZHANG T T, KANG Y, WANG P, YU W, WANG J, LI W, JIANG X Y, ZHOU Y. Integrated metabolome, transcriptome analysis, and multi-f lux full-length sequencing offer novel insights into the function of lignin biosynthesis as a Sesuvium portulacastrum response to salt stress[J]. International Journal of Biological Macromolecules, 2023, 237: 124222. DOI: 10.1016/j.ijbiomac.2023.124222.
[22]ZHAO C, ZAYED O, ZENG F, LIU C, ZHANG L, ZHU P, HSU C C, TUNCIL Y E, TAO W A, CARPITA N C, ZHU J K. Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis[J]. New Phytologist, 2019, 224(1): 274-290. DOI: 10.1111/nph.15867.
[23]DOBLAS V G, GELDNER N, BARBERON M. The endodermis, a tightly controlled barrier for nutrients[J]. Current Opinion in Plant Biology, 2017, 39: 136-143. DOI: 10.1016/j.pbi.2017.06.010.
[24]VAN ZELM E, ZHANG Y, TESTERINK C. Salt tolerance mechanisms of plants[J]. Annual Review of Plant Biology, 2020, 71: 403-433. DOI: 10.1146/annurev-arplant-050718-100005.
[25]BLUMWALD E, AHARON G S, APSE M P. Sodium transport in plant cells[J]. Biochim Biophys Acta, 2000, 1465(1-2): 140-151. DOI: 10.1016/s0005-2736(00)00135-8.
[26]TUTEJA N. Mechanisms of high salinity tolerance in plants[J]. Methods in Enzymology, 2007, 428: 419-438. DOI: 10.1016/S0076-6879(07)28024-3.
[27]YANG Y, GUO Y. Elucidating the molecular mechanisms mediating plant salt-stress responses[J]. New Phytologist, 2018, 217(2): 523-539. DOI: 10.1111/nph.14920.
[28]JIANG Z H, ZHOU X, TAO M, YUAN F, LIU L, WU F, WU X, XIANG Y, NIU Y, LIU F, LI C, YE R, BYEON B, XUE Y, ZHAO H, WANG H N, CRAWFORD B M, JOHNSON D M, HU C, PEI C, ZHOU W, SWIFT G B, ZHANG H, VO-DINH T, HU Z, SIEDOW J N, PEI Z M. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx[J]. Nature, 2019, 572: 341-346. DOI: 10.1038/s41586-019-1449-z.
[29]ESSAH P A, DAVENPORT R, TESTER M. Sodium influx and accumulation in Arabidopsis[J]. Plant Physiology, 2003, 133(1): 307-318. DOI: 10.1104/pp.103.022178.
[30]MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681. DOI: 10.1146/annurev.arplant.59.032607.092911.
[31]FRANCISCO R, WALTER G, JULIAN I S. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance[J]. Science, 1995, 270(5242): 1660-1663. DOI: 10.1126/science.270.5242.1660.
[32]RUS A, LEE B H, MUÑOZ-MAYOR A, SHARKHUU A, MIURA K, ZHU J K, BRESSAN R A, HASEGAWA P M. AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta[J]. Plant Physiology, 2004, 136(1): 2500-2511. DOI: 10.1104/pp.104.042234.
[33]RUS A, YOKOI S, SHARKHUU A, REDDY M, LEE B H, MATSUMOTO T K, KOIWA H, ZHU J K, BRESSAN R A, HASEGAWA P M. AtHKT1 is a salt tolerance determinant that controls Na(+) entry into plant roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(24): 14150-14155. DOI: 10.1073/pnas.241501798.
[34]UOZUMI N, KIM E J, RUBIO F, YAMAGUCHI T, MUTO S, TSUBOI A, BAKKER E P, NAKAMURA T, SCHROEDER J I. The Arabidopsis HKT1 gene homolog mediates inward Na(+) currents in xenopus laevis oocytes and Na(+) uptake in Saccharomyces cerevisiae[J]. Plant Physiology, 2000, 122(4): 1249-1259. DOI: 10.1104/pp.122.4.1249.
[35]BERTHOMIEU P, CONÉJÉRO G, NUBLAT A, BRACKENBURY WJ, LAMBERT C, SAVIO C, UOZUMI N, OIKI S, YAMADA K, CELLIER F, GOSTI F, SIMONNEAU T, ESSAH PA, TESTER M, VÉRY AA, SENTENAC H, CASSE F. Functional analysis of AtHKT1 in Arabidopsis shows that Na(+) recirculation by the phloem is crucial for salt tolerance[J]. The EMBO Journal, 2003, 22(9): 2004-2014. DOI: 10.1093/emboj/cdg207.
[36]HAMAMOTO S, HORIE T, HAUSER F, DEINLEIN U, SCHROEDER J I, UOZUMI N. HKT transporters mediate salt stress resistance in plants: From structure and function to the field[J]. Current Opinion in Biotechnology, 2015, 32: 113-120. DOI: 10.1016/j.copbio.2014.11.025.
[37]ALI A, MAGGIO A, BRESSAN R A, YUN D J. Role and functional differences of HKT1-type transporters in plants under salt stress[J]. International Journal of Molecular Sciences, 2019, 20(5): 1059. DOI: 10.3390/ijms20051059.
[38]RUBIO F, GASSMANN W, SCHROEDER J I. Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance[J]. Science, 1995, 270(5242): 1660-1663. DOI: 10.1126/science.270.5242.1660.
[39]SCHACHTMAN D P, SCHROEDER J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants[J]. Nature, 1994, 370(6491): 655-658. DOI: 10.1038/370655a0.
[40]ZHANG J L, SHI H. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynthesis Research, 2013, 115(1): 1-22. DOI: 10.1007/s11120-013-9813-6.
[41]KOBAYASHI N I, YAMAJI N, YAMAMOTO H, OKUBO K, UENO H, COSTA A, TANOI K, MATSUMURA H, FUJII-KASHINO M, HORIUCHI T, NAYEF M A, SHABALA S, AN G, MA J F, HORIE T. OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice[J]. The Plant Journal, 2017, 91(4): 657-670. DOI: 10.1111/tpj.13595.
[42]REN Z H, GAO J P, LI L G, CAI X L, HUANG W, CHAO D Y, ZHU M Z, WANG Z Y, LUAN S, LIN H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter[J]. Nature Genetics, 2005, 37(10): 1141-1146. DOI: 10.1038/ng1643.
[43]BYRT C S, PLATTEN J D, SPIELMEYER W, JAMES R A, LAGUDAH E S, DENNIS E S, TESTER M, MUNNS R. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1[J]. Plant Physiology, 2007, 143(4): 1918-1928. DOI: 10.1104/pp.106.093476.
[44]MUNNS R, JAMES RA, XU B, ATHMAN A, CONN SJ, JORDANS C, BYRT CS, HARE RA, TYERMAN SD, TESTER M, PLETT D, GILLIHAM M. Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene[J]. Nature Biotechnology, 2012, 30(4): 360-364. DOI: 10.1038/nbt.2120.
[45] 杨玲琴, 刘敬, 李魏, 戴良英. 植物钾离子通道AKT1的研究进展[J]. 生物技术通报, 2019, 35(4): 94-100. DOI: 10.13560/j.cnki.biotech.bull.1985.2019-0033.YANG L Q, LIU J, LI W, DAI L Y. Research advances in potassium ion channel AKT1 in plant[J]. Biotechnology Bulletin, 2019, 35(4): 94-100. DOI: 10.13560/j.cnki.biotech.bull.1985.2019-0033.
[46]NIEVES-CORDONES M, MILLER A J, ALEMAN F, MARTINEZ V, RUBIO F. A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5[J]. Plant Molecular Biology, 2008, 68(6): 521-532. DOI: 10.1007/s11103-008-9388-3.
[47]GOLLDACK D, QUIGLEY F, MICHALOWSKI C B, KAMASANI U R, BOHNERT H J. Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently[J]. Plant Molecular Biology, 2003, 51: 71-81. DOI: 10.1023/A:1020763218045.
[48]DUAN H R, MA Q, ZHANG J L, HU J, BAO A K, WEI L, WANG Q, LUAN S, WANG S M. The inward-rectifying K+ channel SsAKT1 is a candidate involved in K+ uptake in the halophyte Suaeda salsa under saline condition[J]. Plant Soil, 2015, 395: 173-187. DOI: 10.1007/s11104-015-2539-9.
[49]ARDIE S W, LIU S, TAKANO T. Expression of the AKT1-type K(+) channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis[J]. Plant Cell Reports, 2010, 29(8): 865-874. DOI: 10.1007/s00299-010-0872-2.
[50]ZEESHAN M, LU M, NAZ S, SEHAR S, CAO F, WU F. Resemblance and difference of seedling metabolic and transporter gene expression in high tolerance wheat and barley cultivars in response to salinity stress[J]. Plants (Basel), 2020, 9(4): 519. DOI: 10.3390/plants9040519.
[51]JOSHI S, NATH J, SINGH A K, PAREEK A, JOSHI R. Ion transporters and their regulatory signal transduction mechanisms for salinity tolerance in plants[J]. Physiologia Plantarum, 2022, 174: e13702. DOI: 10.1111/ppl.13702.
[52]BASU S, KUMAR A, BENAZIR I, KUMAR G. Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants[J]. Physiologia Plantarum, 2021, 171(4): 502-519. DOI: 10.1111/ppl.13112.
[53]KRONZUCKER H J, BRITTO D T. Sodium transport in plants: A critical revies[J]. New Phytologist, 2011, 189: 54-81. DOI: 10.1111/j.1469-8137.2010.03540.x.
[54]MAATHUIS F J, SANDERS D. Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides[J]. Plant Physiology, 2001, 127(4): 1617-1625. DOI: 10.1104/pp.010502.
[55]WU S J, DING L, ZHU J K. SOS1, a genetic locus essential for salt tolerance and potassium acquisition[J]. The Plant Cell, 1996, 8(4): 617-627. DOI: 10.1105/tpc.8.4.617.
[56]ZHU J K, LIU J, XIONG L. Genetic analysis of salt tolerance in Arabidopsis: Evidence for a critical role of potassium nutrition[J]. The Plant Cell, 1998, 10(7): 1181-1191. DOI: 10.1105/tpc.10.7.1181.
[57]QIU Q S, GUO Y, DIETRICH M A, SCHUMAKER K S, ZHU J K. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 8436-8441. DOI: 10.1073/pnas.122224699.
[58]SHI H, QUINTERO F J, PARDO J M, ZHU J K. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants[J]. The Plant Cell, 2002, 14: 465-477. DOI: 10.1105/tpc.010371
[59]QUINTERO F J, MARTINEZ-ATIENZA J, VILLALTA I, JIANG X, KIM W Y, ALI Z, FUJII H, MENDOZA I, YUN D J, ZHU J K, PARDO J M. Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6): 2611-2616. DOI: 10.1073/pnas.1018921108.
[60]SHI H, ISHITANI M, KIM C, ZHU J K. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 6896-6901. DOI: 10.1073/pnas.120170197
[61]MARTINEZ-ATIENZA J, JIANG X, GARCIADEBLAS B, MENDOZA I, ZHU J K, PARDO J M, QUINTERO F J. Conservation of the salt overly sensitive pathway in rice[J]. Plant Physiology, 2007, 143(2): 1001-1012. DOI: 10.1104/pp.106.092635:
[62]XU H, JIANG X Y, ZHAN K H, CHENG X Y, CHEN X J, PARDO J M, CUI D. Functional characterization of a wheat plasma membrane Na+/H+ antiporter in yeast[J]. Archives of Biochemistry and Biophysics, 2008, 473(1): 8-15. DOI: 10.1016/j.abb.2008.02.018.
[63]YIN X C, XIA Y Q, XIE Q, CAO Y X, WANG Z Y, HAO G P, SONG J, ZHOU Y, JIANG X Y. The protein kinase complex CBL10-CIPK8-SOS1 functions in Arabidopsis to regulate salt tolerance[J]. Journal of Experimental Botany, 2020, 71(6): 1801-1814. DOI: 10.1093/jxb/erz549.
[64]TANG R J, LIU H, BAO Y, LV Q D, YANG L, ZHANG H X. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress[J]. Plant Molecular Biology, 2010, 74(4-5): 367-380. DOI: 10.1007/s11103-010-9680-x.
[65]OH D H, LEIDI E, ZHANG Q, HWANG S M, LI Y, QUINTERO F J, JIANG X, D'URZO M P, LEE S Y, ZHAO Y, BAHK J D, BRESSAN R A, YUN D J, PARDO J M, BOHNERT H J. Loss of halophytism by interference with SOS1 expression[J]. Plant Physiology, 2009, 151(1): 210-22. DOI: 10.1104/pp.109.137802.
[66]ZHOU Y, ZHU Y, LI W, ZHANG T T, LI Y X, KANG Y Q, WANG J, GUO J C, JIANG X Y. Heterologous expression of Sesuvium portulacastrum SOS-related genes confer salt tolerance in yeast[J]. Acta Physiologiae Plantarum, 2023, 45(4): 58. DOI: 10.1007/s11738-023-03518-7
[67]YANG Z, WANG C, XUE Y, LIU X, CHEN S, SONG C P, YANG Y Q, GUO Y. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance[J]. Nature Communication, 2019, 10: 1199. DOI: 10.1038/s41467-019-09181-2.
[68]MA L, YE J M, YANG Y Q, LIN H X, YUE L L, LUO J, LONG Y, FU H Q, LIU X N, ZHANG Y L, WANG Y, CHEN L Y, KUDLA J, WANG Y J, HAN S C, SONG C P, GUO Y. The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress[J]. Development Cell, 2019, 48: 697-709. DOI: 10.1016/j.devcel.2019.02.010.
[69]LI Q, FU H, YU X, WEN X, GUO H W, GUO Y, LI J R. The SALT OVERLY SENSITIVE 2-CONSTITUTIVE TRIPLE RESPONSE1 module coordinates plant growth and salt tolerance in Arabidopsis[J]. Journal of Experimental Botany, 2023, erad368. DOI: 10.1093/jxb/erad368.
[70]XIE Q, ZHOU Y, JIANG X Y. Structure, function, and regulation of the plasma membrane Na+/H+ antiporter salt overly sensitive 1 in plants[J]. Frontiers in Plant Science, 2022, 13: 866265. DOI: 10.3389/fpls.2022.866265.
[71]WANG Y, PAN C, CHEN Q, XIE Q, GAO Y, HE L, LI Y, DONG Y, JIANG X Y, ZHAO Y. Architecture and autoinhibitory mechanism of the plasma membrane Na+/H+ antiporter SOS1 in Arabidopsis[J]. Nature Communication, 2023, 14(1): 4487. DOI: 10.1038/s41467-023-40215-y.
[72]QUINTERO F J, OHTA M, SHI H, ZHU J K, PARDO J M. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(13): 9061-6. DOI: 10.1073/pnas.132092099.
[73]NÚÑEZ-RAMÍREZ R, SÁNCHEZ-BARRENA M J, VILLALTA I, VEGA J F, PARDO J M, QUINTERO F J, MARTINEZ-SALAZAR J, ALBERT A. Structural insights on the plant salt-overly-sensitive 1 (SOS1) Na(+)/H(+) antiporter[J]. Journal of Molecular Biology, 2012, 424(5): 283-294. DOI: 10.1016/j.jmb.2012.09.015.
[74]JARVIS D E, RYU C H, BEILSTEIN M A, SCHUMAKER K S. Distinct roles for SOS1 in the convergent evolution of salt tolerance in Eutrema salsugineum and Schrenkiella parvula[J]. Molecular Biology and Evolution, 2014, 31: 2094-2107. DOI: 10.1093/molbev/msu152.
[75]GUO Y, HALFTER U, ISHITANI M, ZHU J K. Molecula r characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance[J]. The Plant Cell, 2001, 13: 1383-1400. DOI: 10.1105/TPC.010021.
[76]GONG D, GUO Y, JAGENDORF A T, ZHU J K. Biochemical characterization of the Arabidopsis protein kinase SOS2 that functions in salt tolerance[J]. Plant Physiology, 2002, 130(1): 256-264. DOI: 10.1104/pp.004507.
[77]ZHOU Y, LAI Z, YIN X, YU S, XU Y, WANG X, CONG X, LUO Y, XU H X, JIANG X Y. Hyperactive mutant of a wheat plasma membrane Na+/H+ antiporter improves the growth and salt tolerance of transgenic tobacco[J]. Plant Science, 2016, 253: 176-186 DOI: 10.1016/j.plantsci.2016.09.016.
[78] 马瑞, 李世贵, 刘维刚, 王志科, 杨江伟, 唐勋, 张宁, 司怀军. 植物CBL-CIPK信号系统的功能及其响应非生物胁迫作用机制研究进展[J]. 植物生理学报, 2021, 57(3): 521-530. DOI: 10.13592/j.cnki.ppj.2020.0173.MA R, LI S G, LIU W G, WANG Z K, YANG J W, TANG X, ZHANG N, SI H J. Functions and progress in mechanism research of CBL-CIPK signaling system in plants[J]. Plant Physiology Journal, 2021, 57(3): 521-530. DOI: 10.13592/j.cnki.ppj.2020.0173.
[79]TANG R J, YANG Y, YANG L, LIU H, WANG C T, YU M M, GAO X S, ZHANG H X. Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane[J]. Plant Cell and Environment, 2014, 37(3): 573-588. DOI: 10.1111/pce.12178.
[80]HU D G, LI M, LUO H, DONG Q L, YAO Y X, YOU C X, HAO Y J. Molecular cloning and functional characterization of MdSOS2 reveals its involvement in salt tolerance in apple callus and Arabidopsis[J]. Plant Cell Reports, 2012, 31(4): 713-722. DOI: 10.1007/s00299-011-1189-5.
[81]HUERTAS R, OLÍAS R, ELJAKAOUI Z, GÁLVEZ F J, LI J, DE MORALES P A, BELVER A, RODRÍGUEZ-ROSALES M P. Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato[J]. Plant Cell and Environment, 2012, 35(8): 1467-1482. DOI: 10.1111/j.1365-3040.2012.02504.x.
[82]QUAN R, LIN H, MENDOZA I, ZHANG Y, CAO W, YANG Y, SHANG M, CHEN S, PARDO J M, GUO Y. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J]. The Plant Cell, 2007, 19(4): 1415-1431. DOI: 10.1105/tpc.106.042291.
[83]KIM B G, WAADT R, CHEONG Y H, PANDEY G K, DOMINGUEZ-SOLIS J R, SCHÜLTKE S, LEE S C, KUDLA J, LUAN S. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis[J]. The Plant Journal, 2007, 52(3): 473-484. DOI: 10.1111/j.1365-313X.2007.03249.x.
[84]BLUMWALD E, POOLE R J. Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris[J]. Plant Physiology, 1985, 78: 163-167. DOI: 10.1104/pp.78.1.163.
[85]GONG Z Z, XIONG L M, SHI H Z, YANG S H, HERRERA-ESTRELLA L R, XU G H, CHAO D Y, LI J R, WANG P Y, QIN F, LI J J, DING Y L, SHI Y T, WANG Y, YANG Y Q, GUO Y, ZHU J K. Plant abiotic stress response and nutrient use efficiency[J]. Science China Life Sciences, 2020, 63(5): 635-674. DOI: 10.1007/s11427-020-1683-x.
[86]GAXIOLA R A, RAO R, SHERMAN A, GRISAFI P, ALPER S L, FINK G R. The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast[J]. Proceedings of The National Academy of Sciences of The United States of America, 1999, 96(4): 1480-1485. DOI: 10.1073/pnas.96.4.1480.
[87]APSE M P, AHARON G S, SNEDDEN W A, BLUMWALD E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis[J]. Science, 1999, 285(5431): 1256-1258. DOI: 10.1126/science.285.5431.1256.
[88]ZHANG H X, BLUMWALD E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nature Biotechnology, 2001, 19(8): 765-768. DOI: 10.1038/90824.
[89]ZHANG H X, HODSON J N, WILLIAMS J P, BLUMWALD E. Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation[J]. Proceedings of The National Academy of Sciences of The United States of America, 2001, 98(22): 12832-12836. DOI: 10.1073/pnas.231476498.
[90]YOKOI S, QUINTERO F J, CUBERO B, RUIZ M T, BRESSAN R A, HASEGAWA P M, PARDO J M. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response[J]. The Plant Journal, 2002, 30(5): 529-539. DOI: 10.1046/j.1365-313x.2002.01309.x.
[91]BASSIL E, TAJIMA H, LIANG Y C, OHTO M A, USHIJIMA K, NAKANO R, ESUMI T, COKU A, BELMONTE M, BLUMWALD E. The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction[J]. The Plant Cell, 2011, 23(9): 3482-3497. DOI: 10.1105/tpc.111.089581.
[92]BASSIL E, OHTO M A, ESUMI T, TAJIMA H, ZHU Z, CAGNAC O, BELMONTE M, PELEG Z, YAMAGUCHI T, BLUMWALD E. The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development[J]. The Plant Cell, 2011, 23(1): 224-239. DOI: 10.1105/tpc.110.079426.
[93]AN R, CHEN Q J, CHAI M F, LU P L, SU Z, QIN Z X, CHEN J, WANG X C. ATNHX8, a member of the monovalent cation: proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter[J]. The Plant Journal, 2007, 49(4): 718-728. DOI: 10.1111/j.1365-313X.2006.02990.x.
[94]YAMAGUCHI T, AHARON G S, SOTTOSANTO J B, BLUMWALD E. Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+- and pH-dependent manner[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(44): 16107-16112. DOI: 10.1073/pnas.0504437102.
[95]YAMAGUCHI T, APSE MP, SHI H, BLUMWALD E. Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(21): 12510-12515. DOI: 10.1073/pnas.2034966100.
[96]PABUAYON I C M, JIANG J, QIAN H, CHUNG J S, SHI H Z. Gain-of-function mutations of AtNHX1 suppress sos1 salt sensitivity and improve salt tolerance in Arabidopsis[J]. Stress Biology, 2021, 1: 14. DOI: 10.1007/s44154-021-00014-1
[97]BAO A K, WANG S M, WU G Q, XI J J, ZHANG J L, WANG C M. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.)[J]. Plant Science. 2009, 176: 232-240. DOI: 10.1016/J.PLANTSCI.2008.10.009.
[98]LIU S P, ZHENG L Q, XUE Y H, ZHANG Q, WANG L, SHOU H X. Overexpression of OsVP1 and OsNHX1 increases tolerance to drought and salinity in rice[J]. Journal of Plant Biology, 2010, 53(6): 444-452. DOI: 10.1007/s12374-010-9135-6
[99]ZHAO F Y, ZHANG X J, LI P H, ZHAO Y X, ZHANG H. Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1[J]. Molecular Breeding, 2006, 17(4): 341-353. DOI: 10.1007/s11032-006-9005-6.
[100]BRINI F, HANIN M, MEZGHANI I, BERKOWITZ G A, MASMOUDI K. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants[J]. Journal of Experimental Botany, 2007, 58(2): 301-308. DOI: 10.1093/jxb/erl251.
[101]GOUIAA S, KHOUDI H, LEIDI EO, PARDO J M, MASMOUDI K. Expression of wheat Na+/H+ antiporter TNHXS1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance[J]. Plant Molecular Biology Reporter, 2012, 79(1-2): 137-155. DOI: 10.1007/s11103-012-9901-6.
[102]ZHOU Y G, XU K, GAO H, YAO W, ZHANG Y, ZHANG Y, HUSSAIN M A, WANG F, YANG X, LI H Y. Comparative proteomic analysis of two wild soybean (Glycine soja) genotypes reveals positive regulation of saline-alkaline stress tolerance by tonoplast transporters[J]. Journal of Agricultural and Food Chemistry, 2023, 71: 14109-14124. DOI: 10.1021/acs.jafc.3c02111.
[103]QIU Q S, GUO Y, QUINTERO F J, PARDO J M, SCHUMAKER K S, ZHU J K. Regulation of vacuolar Na+/H+ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway[J]. Journal of Biological Chemistry, 2004, 279: 207-215. DOI: 10.1074/jbc.M307982200.
[104]BATELLI G, VERSLUES P E, AGIUS F, QIU Q, FUJII H, PAN S, SCHUMAKER K S, GRILLO S, ZHU J K. SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity[J]. Molecular and Cellular Biology, 2007, 27(22): 7781-7790. DOI: 10.1128/MCB.00430-07.
[105]KIM B G, WAADT R, CHEONG Y H, PANDEY G K, DOMINGUEZ-SOLIS J R, SCHÜLTKE S, LEE S C, KUDLA J, LUAN S. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis[J]. The Plant Journal, 2007, 52(3): 473-484. DOI: 10.1111/j.1365-313X.2007.03249.x.
[106]PANDEY G K, KANWAR P, SINGH A, STEINHORST L, LUAN S. Calcineurin B-like protein-interacting protein kinase CIPK21 regulates osmotic and salt stress responses in Arabidopsis[J]. Plant Physiology, 2015, 169: 780-792. DOI: 10.1104/pp.15.00623.
[107]KHAN S A, LI M Z, WANG S M, YIN H J. Revisiting the role of plant transcription factors in the battle against abiotic stress[J]. International Journal of Molecular Sciences, 2018, 19(6): 1634. DOI: 10.3390/ijms19061634.
[108]KREPS J A, WU Y, CHANG H S, ZHU T, WANG X, HARPER J F. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress[J]. Plant Physiology, 2002, 130: 1-21. DOI: 10.1104/pp.008532.
[109]ZELLER G, HENZ S R, WIDMER, C K, SACHSENBERG T, RÄTSCH G, WEIGEL D, LAUBINGER S. Stress-induced changes in the Arabidopsis thaliana transcriptome analyzed using whole genome tiling arrays[J]. The Plant Joural, 2009, 58, 1068-1082.
[110]KIM J H, NGUYEN N H, JEONG C Y, NGUYEN N T, HONG S W, LEE H. Loss of the R2R3 MYB, AtMyb73, causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis[J]. Journal of Plant Physiology, 2013, 170(16): 1461-1465. DOI: 10.1016/j.jplph.2013.05.011.
[111]DOSSA K, MMADI M A, ZHOU R, LIU A, YANG Y, DIOUF D, YOU J, ZHANG X. Ectopic expression of the sesame MYB transcription factor SiMYB305 promotes root growth and modulates ABA-mediated tolerance to drought and salt stresses in Arabidopsis[J]. AoB Plants, 2019, 12(1): plz081. DOI: 10.1093/aobpla/plz081.
[112]CHEN H, LAI L, LI L, LIU L, JAKADA B H, HUANG Y, HE Q, CHAI M, NIU X, QIN Y. AcoMYB4, an Ananas comosus L. MYB transcription factor, functions in osmotic stress through negative regulation of ABA signaling[J]. International Journal of Molecular Sciences, 2020, 21(16): 5727. DOI: 10.3390/ijms21165727.
[113]FANG Q, JIANG T, XU L, LIU H, MAO H, WANG X, JIAO B, DUAN Y, WANG Q, DONG Q, YANG L, TIAN G, ZHANG C, ZHOU Y, LIU X, WANG H, FAN D, WANG B, LUO K. A salt-stress-regulator from the Poplar R2R3 MYB family integrates the regulation of lateral root emergence and ABA signaling to mediate salt stress tolerance in Arabidopsis[J]. Plant Physiology Biochemistry, 2017, 114: 100-110. DOI: 10.1016/j.plaphy.2017.02.018.
[114]SONG Y, LI J, SUI Y, HAN G, ZHANG Y, GUO S, SUI N. The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis[J]. Plant Molecular Biology, 2020, 102(6): 603-614. DOI: 10.1007/s11103-020-00966-4.
[115]DAI W, WANG M, GONG X, LIU J H. The transcription factor FcWRKY40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs[J]. New Phytologist, 2018, 219(3): 972-989. DOI: 10.1111/nph.15240.
[116]AN J P, YAO J F, XU R R, YOU C X, WANG X F, HAO Y J. An apple NAC transcription factor enhances salt stress tolerance by modulating the ethylene response[J]. Physiologia Plantarum, 2018, 164(3): 279-289. DOI: 10.1111/ppl.12724.
[117]YANG X, KIM M Y, HA J, LEE S H. Overexpression of the soybean NAC gene GmNAC109 increases lateral root formation and abiotic stress tolerance in transgenic Arabidopsis plants[J]. Frontiers in Plant Science, 2019, 10: 1036. DOI: 10.3389/fpls.2019.01036.
[118]WANG Q, GUO C, LI Z, SUN J, DENG Z, WEN L, LI X, GUO Y. Potato NAC transcription factor StNAC053 enhances salt and drought tolerance in transgenic Arabidopsis[J]. International Journal of Molecular Sciences, 2021, 22(5): 2568. DOI: 10.3390/ijms22052568.
[119]LI Q, WU Q, WANG A, LV B, DONG Q, YAO Y, WU Q, ZHAO H, LI C, CHEN H, WANG X. Tartary buckwheat transcription factor FtbZIP83 improves the drought/salt tolerance of Arabidopsis via an ABA-mediated pathway[J]. Plant Physiology Biochemistry, 2019, 144: 312-323. DOI: 10.1016/j.plaphy.2019.10.003.
[120]LI Q, ZHAO H, WANG X, KANG J, LV B, DONG Q, LI C, CHEN H, WU Q. Tartary buckwheat transcription factor FtbZIP5, regulated by FtSnRK2.6, can improve salt/drought resistance in transgenic Arabidopsis[J]. International Journal of Molecular Sciences, 2020, 21(3): 1123. DOI: 10.3390/ijms21031123.
[121]MA L, HAN R, YANG Y Q, LIU X, LI H, ZHAO X, LI J, FU H, HUO Y, SUN L, YAN Y, ZHANG H Y, LI Z, TIAN F, LI J L, GUO Y. Phytochromes enhance SOS2-mediated PIF1 and PIF3 phosphorylation and degradation to promote Arabidopsis salt tolerance[J]. The Plant Cell, 2023, 35(8): 2997-3020. DOI: 10.1093/plcell/koad117
[122]YANG R, YANG Z, XING M, JING Y, ZHANG Y, ZHANG K, ZHOU Y, ZHAO H, QIAO W, SUN J. TaBZR1 enhances wheat salt tolerance via promoting ABA biosynthesis and ROS scavenging[J]. Journal of Genetics and Genomics, 2023. DOI: 10.1016/j.jgg.2023.09.006.
[123]LUAN S, KUDLA J, RODRIGUEZ-CONCEPCION M, YALOVSKY S, GRUISSEM W. Calmodulins and calcineurin B-like proteins: Calcium sensors for specific signal response coupling in plants[J]. The Plant Cell, 2002, 14: S389-S400. DOI: 10.1105/tpc.001115.
[124]WU G Q, FENG R J, WANG S M, WANG C M, BAO A K, WEI L, YUAN H J. Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.)[J]. Frontiers in Plant Science, 2015, 6: 581. DOI: 10.3389/fpls.2015.00581.
[125]MA D M, WR W X, LI H W, JIN F X, GUO L N, WANG J, DA H J, XU X, Co-expression of the Arabidopsis SOS genes enhances salt tolerance in transgenic tall fescue (Festuca arundinacea Schreb.)[J]. Protoplasma, 2014, 251(1): 219-231. DOI: 10.1007/s00709-013-0540-9.
[126]ZHOU Y, YIN X, DUAN R, GUO J, JIANG X Y. SpAHA1 and SpSOS1 coordinate in transgenic yeast to improve salt tolerance[J]. PLoS One, 2015, 10: e0137447. DOI: 10.1371/journal.pone.0137447
[127]FAN Y, YIN X, XIE Q, XIA Y, WANG Z, SONG J, ZHOU Y, JIANG X Y. Co-expression of SpSOS1 and SpAHA1 in transgenic Arabidopsis plants improves salinity tolerance[J]. BMC Plant Biology, 2019, 19(1): 74. DOI: 10.1186/s12870-019-1680-7.
[128]FEKI K, QUINTERO F J, KHOUDI H, LEIDI E O, MASMOUDI K, PARDO J M, BRINI F. A constitutively active form of a durum wheat Na(+)/H(+) antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis[J]. Plant Cell Reports, 2014, 33(2): 277-288. DOI: 10.1007/s00299-013-1528-9.
[129]CHENG C, ZHONG Y, WANG Q, CAI Z, WANG D, LI C. Genome-wide identification and gene expression analysis of SOS family genes in tuber mustard (Brassica juncea var. tumida)[J]. PLoS ONE, 2019, 14(11): e0224672. DOI: 10.1371/journal.pone.0224672:
[130]NUTAN K K, KUMAR G, SINGLA-PAREEK S L, PAREEK A. A salt overly sensitive pathway member from Brassica juncea BjSOS3 can functionally complement ΔAtsos3 in Arabidopsis[J]. Current Genomics, 2018, 19(1): 60-69. DOI: 10.2174/1389202918666170228133621.
相关知识
植物抗逆分子机制研究进展
红树植物耐水淹和高盐适应性研究进展
十字花科作物的耐盐性:生理反应和分子机制,Functional Plant Biology
丛枝菌根真菌提高植物耐盐性研究进展
植物抗病性分子机制研究进展剖析
耐盐观赏植物的耐盐机理及分子育种,Frontiers in Plant Science
植物的耐盐性和适应盐碱土壤
丛枝菌根真菌提高植物耐盐性研究进展.pdf
植物抗病分子机制及抗病基因工程研究进展
荷花的耐盐性与排盐机制
网址: 植物耐盐分子机制研究进展 https://m.huajiangbk.com/newsview2224160.html
上一篇: 林果科技大讲堂:毛白杨的繁殖方法 |
下一篇: 盐碱地上的致富花——耐盐、高产的 |