土壤养分的评估是衡量其中养分含量的关键[1-3]。土壤养分的动态变化由于受到自然环境和人类活动的共同影响,致使其平衡性受到影响,作为人为对土壤养分后期投入的关键因素,评估土壤养分便成了必要的前提工作。此外,同时也为保证土壤可持续发展提供了支持。这种做法有助于将资源浪费和环境污染降低到最小。在农业科学上,通过各种指数对土壤养分的丰度和肥力进行观察和测量的评估方法发挥着至关重要的作用。因此,评估土壤养分对于提升环境平衡性和土壤可持续发展至关重要[4-5]。近年来,国内外对土壤养分评价方法的探讨研究涌现出诸多方法,包括国外主要采用的多变量指标克里格法[6]、土壤质量动力学方法[7]、土壤质量综合评分法[8]等,以及国内比较常用的灰色关联分析[9]、因子–聚类分析[10]、主成分分析法[11]、模糊综合评判法[12]等。特别是因子分析,通过压缩维度来获取主要公共因素用来解释初始数据含义,通过旋转因子轴等方法来增强公共因子对原始变量的解释能力[12-13]。火龙果作为新兴果树,种植技术尚属初步阶段。果农在给火龙果施肥时,往往会盲目效仿他人或根据自身的经验进行操作,这可能会造成土壤养分的失衡。这种失衡会对火龙果的产量和质量产生严重影响。目前,还未有学者对海南地区火龙果种植地的土壤养分以及养分充足程度进行评估,且经过了一定时间间隔,海南火龙果主产区土壤养分状况如何变化并不清楚[14]。因此,笔者通过对184个火龙果基地土壤的碱解氮、有效磷、速效钾、全氮、有机碳、pH等6个指标进行因子-聚类分析与土壤养分等级评价,旨在为海南火龙果的高产优产提供基础数据和理论支持。
研究区域为海南省东部和西部的火龙果主产区,该区域地处108°48′20.201″E,18°38′52.468″N;108°44′56.724″E,19°4′21.223″N。全年无霜冻,气候温和、温差小日照充足,年平均气温24~25 ℃,年均降雨量约1 100 mm,蒸发量约2 000 mm,年均日照时数8 h,干燥季节和多雨季节有显著差别,基本土壤种类为花岗岩发育而来的红色壤土[10]。以“S”型五点混合采样法,从每个测试点收集0~20 cm深度的土壤样本。3个地块被选为每个园区的样本区域。
1.2 测定方法按照文献[15]的方法进行土壤化学检测:土壤pH通过水提取电势法(水与土的比例为2.5∶1.0)进行检测,碱解氮(AN)含量通过碱解扩散法检测,有效磷(AP)含量通过盐酸− 氟化铵法检测,有效钾(AK)含量通过乙酸铵萃取− 火焰光度计法测试,全氮(TN)用开式法测定,土壤有机碳(SOC)用重铬酸钾氧化− 分光光度法测定。
1.3 土壤养分等级评估结合全国第二次土壤普查的养分分级指导标准,结合早期研究对火龙果园养分评级的方法[16-17],对被调查地区的单个养分指标进行普通等级评估。土壤养分分级标准详见表1。
表 1 火龙果园划分土壤营养含量丰缺的标准
指标极低低中等高极高 pH<5.05.0~6.56.5~7.57.5~8.5>8.5AN/(mg·kg−1)<50.050.0~100.0100.0~150.0150.0~200.0>200.0AP/(mg·kg−1)<5.05.0~10.010.0~20.020.0~40.0>40.0AK/(mg·kg−1)<50.050.0~100.0100.0~150.0150.0~250.0>250.0TN/(mg·kg−1)<500500~750750~15001500~2000>2000SOC/(mg·kg−1)<29002900~87008700~1450014500~26100>26100 注:AN碱解氮;AP速效磷;AK速效钾;TN全氮;SOC有机碳,下同。1.4 因子分析利用因子分析判断评估土壤指标的旋转因子特征值和特征向量;然后依据因子组成的累计贡献率选出关键因子成分[18-20]。在此基础上,得到各因子成分的分数,并通过综合分数公式计算得出各检测点的土壤养分综合评估值(IFI)[21-25]。数据处理流程包括:(1)选择评价指标;(2)进行评价指标间的关联性分析;(3)对原始评价指标进行标准化处理;(4)对处理后的指标执行因子分析;(5)使用提取出的因子作为新指标,算出其相关IFI值。
IFI=λ1F1+λ2F2+……+λmFm,(1)式中,IFI 是指综合评分值,λ 代表相关因子的贡献率,F 是对应的因子。聚类分析是基于土壤养分综合评价值IFI,使用组内链接法对土壤样本进行集群分析,以评估其养分水平。
1.5 数据处理原始数据整理和养分等级评价用Excel 2007软件,因子分析和集群分析用SPSS 20.软件。
从表2可以看出,海南省火龙果园土壤的平均pH值为5.76,范围在3.33~7.7之间,变异系数为16.49%,变异系数较小。土壤碱解氮、速效磷、速效钾的平均值分别为28.58、154.3、176.19 mg·kg−1,变异系数都较大,分别为32.09%、74.47%、62.92%。土壤全氮平均值为1580 mg·kg−1,且变幅较大,变异系数达68.35%;土壤有机碳平均值为15300 mg·kg−1,变异系数极大,达到了81.31%。
表 2 对火龙果园土壤养分的描述性统计分析
土壤指标极差最小值最大值平均值标准差变异系数/% pH4.373.337.75.760.9516.49AN(mg·kg-1)58.3214.8173.1328.589.1732.09AP(mg·kg-1)732.626.5759.1154.3114.9174.47AK(mg·kg-1)579.3511.85591.2176.19110.8662.92TN(mg·kg-1)660020068001580108068.35SOC(mg·kg-1)63300110064400153001244081.312.2 土壤营养观测从表1和表3来看,调查的184个区域中有72.82%的土壤pH低于6.5,强酸性土壤比例达到25.54%。土壤速效磷含量最高,处于中等及以上等级(大于10 mg·kg−1)地块比例占100%;土壤全氮与速效钾含量处于中等偏上等级,其中土壤全氮含量大于750 mg·kg−1的地块比例占76.63%,土壤速效钾含量大于100 mg·kg−1的地块比例占76.63%;土壤有机碳含量比例较为均衡,中等以下(小于8 700 mg·kg−1)的地块比例占33.7%,中等等级(8 700~14 500 mg·kg−1)地块比例占21.2%,中等以上(大于14 500 mg·kg−1)比例占45.11%;土壤碱解氮含量最低,有96.74%的土壤碱解氮含量小于50 mg·kg−1,表明多数地块的碱解氮含量处于较缺乏或更低水平。
表 3 火龙果园地不同层次营养成分构成
% 指标极低低中等高极高 pH25.5447.2826.630.540AN96.743.26000AP0000100AK7.6115.7626.0928.821.74TN7.0716.334.2418.4823.91SOC5.9827.7221.225.5419.572.3 土壤养分进行因子分析的数据检验土壤指标之间有一定关联性,这是进行因子分析的关键依据[26]。在进行因子分析之前,有必要对各种土壤营养指标进行关联性评估。从表4可知,土壤有机碳与pH、速效钾、全氮均呈极显著正相关性;土壤全氮与pH值、速效磷和速效钾呈显著正相关;与此同时,土壤中碱解氮与pH值、速效磷呈显著负相关。最具相关性的是土壤有机碳与全氮,关联系数为0.939。这表明在所调查的火龙果园里,土壤营养标准之间存在一定程度的关联性,所有这些标准都适用于因子分析。通过KMO(Kaiser-Meyer-Olkin)-巴特利球形度检验之后,原始数据KMO值为0.529大于 0.5,因子的贡献率相对较高,因此适用于因子分析;对球形检验的统计值为472.498,与概率sig 小于 0.05相一致,这也表明数据适合进行因子分析。变量的共同度是指在原有变量信息中,公共因子提取的程度,它反映了公共因子对原始变量方差的贡献比例。本研究的平均变量共同度为0.607,因此通过因子分析得出的结论相对准确可靠。
表 4 火龙果园土壤养分之间的关联性
指标pHANAPAKTN AN −0.002* AP −0.173 −0.329** AK 0.126 0.092 −0.09 TN 0.202** −0.095 0.233** 0.291** SOC 0.218** −0.017 0.136 0.268** 0.939**2.4 土壤营养成分因子分析在对上述相关分析的基础上,对测量到的6项指标进行因子分析。研究结果显示(表5),具有特征值≥1的公共因子有2个,它们的特征值分别是:2.202 、1.436 ,其方差贡献率依次为 36.700%、23.937%。前2个公因子累计贡献率为 60.637%,所以,这2个公共因子可以用来替代原来的6个评价指标来进行全面的分析。
表 5 旋转因子载荷矩阵及累计贡献
项目P1P2 AN0.0110.704AP0.089−0.825AK0.5170.304pH0.4150.334TN0.929−0.248SOC0.929−0.153特征值2.2021.436方差贡献率/%36.723.937累计方差贡献率/%36.760.637从表5中可以看出,因子1在全氮、有机碳和速效钾3个指标上具有较高的负荷,负荷值分别为0.929、0.929和0.517,表明第一因子主要表示全氮、有机碳和速效钾3个指标的信息;因子2在碱解氮、速效钾和pH指标上具有较高的负荷,因子负荷值分别为0.704、0.304和0.334,这表明因子2主要表示了土壤中的碱解氮含量。因子负荷值分别为0.704、0.304和0.334,这表明因子2主要表示了土壤中的碱解氮、速效钾、pH 的含量。
根据表6,可以将得出的特征向量和经过标准化的数据相乘,从而得到因子得分的计算公式:
表 6 因子得分系统矩阵
项目P1P2 AN0.0370.484AP0.004−0.563AK0.2530.232pH0.2070.248TN0.419−0.129SOC0.423−0.063F1 = 0.037 z1+0.004 z2+0.253 z3+0.207 z4+0.419 z5+0.423z6,
F2 = 0.484 z1−0.563 z2+0.232 z3+0.248 z4−0.129 z5−0.063z6,
式中:z1~z6为标准化的pH、碱解氮、速效磷、速效钾、全氮、有机碳。
接下来,利用公式(1)来计算每个土壤样本的综合分数IFI。在这个研究中,具体的模型如下:
IFI=0.367F1+0.239F2,(2)2.5 土壤营养成分聚类分析根据公式(2)来计算相应的IFI值。然后,采用欧氏距离作为衡量土壤营养差异程度的依据,并使用组间联接法对火龙果园土壤营养水平的亲疏相似度进行系统聚类,从而将184个样本的IFI值划分为3个等级,其中Ⅰ级为:IFI 值在0.88~1.41,属于高等肥力等级;Ⅱ级为 IFI 值在0.04~0.75,属于中等肥力等级;Ⅲ级为 IFI 值在−0.9~0.01,属于较低的肥力等级。文章等级的高低都是相对的。根据这种等级划分,分别统计海南省调查的火龙果园土壤营养在各级别所占的比例,从表7可知,海南省184个火龙果土壤取样点中,有4.35%、36.96%的土壤养分处于Ⅰ级和Ⅱ级,有58.7%的土壤养分处于Ⅲ级,说明海南火龙果土壤肥力总体略差,需要重点培肥。从表7还可看出,海南火龙果分布较为集中的乐东、东方、三亚、陵水4个区域的土壤养分条件有所不同。根据综合得分,从三亚采集的21个样点,土壤养分综合得分相对较高,其中9.52%的土壤养分为Ⅰ级,52.38%为Ⅱ级,38.1%为Ⅲ级,显示三亚地区火龙果土壤养分状况较好。与之相反,东方采集的61个样点中,土壤养分综合得分最低,80.33%的土壤养分为Ⅲ级,表明东方区域火龙果土壤养分状况较差。从乐东地区收集的60个样点中,6.67%的土壤为Ⅰ级,45%的土壤为Ⅱ级,48.33%的土壤处于Ⅲ级状态。陵水的12个土壤样本中,分别有50%和50%的土壤处于Ⅱ级、Ⅲ级状态,表明乐东和陵水两地火龙果土壤养分状态处于中等状态。
表 7 海南火龙果土壤肥力综合指标值及不同肥力等级土壤所占比例
取样点样本数变幅平均值标准差不同土壤肥力所占比例/%IIIIII 乐东60−0.66~1.410.070.446.674548.33东方61−0.9~0.88−0.20.351.6418.0380.33三亚21−0.42~1.160.260.419.5252.3838.1陵水12−0.55~0.70.030.3905050万宁6−0.37~0.580.330.33083.3316.67琼海6−0.56~−0.25−0.3950.1300100澄迈60.28~1.180.5750.316.6783.330文昌3−0.35~0.18−0.150.24033.3366.67儋州3−0.2~0.19−0.010.16033.3366.67海口3−0.68~−0.41−0.50.1200100临高30.23~0.420.350.0801000通过因子分析和聚类分析,将火龙果园中的6个土壤营养指标降维成2个综合指数。其中,因子1主要反映了土壤全氮、有机碳和速效钾的含量,贡献率为36.7%,作为主要影响土壤向植物提供养分能力的因素。养分等级分析揭示了火龙果园土壤中这3种养分的缺失,23.37%的地块速效钾、全氮含量不足,33.7%的地块有机碳含量缺乏。火龙果园种植主要采取多年连作而施肥管理较为简单,长期不使用或少使用有机肥,导致有机质逐年减少[27]。尽管火龙果农户氮素投入量较大,但仍存在土壤缺氮现象。由于氮在土壤中的转化和迁移能力强,在潮湿高温强降雨的条件下,地区土壤质为沙土,多砾石,大量氮元素随降雨而流失,部分氮素经反硝化作用转化成损失至大气,致使环境损害和资源浪费[28-32]。火龙果连续种植导致土壤酸度随时间增长而加剧[30]。调查结果表明,pH 小于 6.5的强酸性土壤占72.82%,最低pH达到3.33。这种现象与该地区多年的连续种植有关。另外,农户普遍过量使用复合肥和尿素,大量氮肥输入导致铵态氮转化为硝酸盐,释放出许多氢离子,这些离子进一步导致土壤pH值降低[33]。
在对海南火龙果园土壤营养状况进行研究时,笔者仅对土壤样品中的部分养分含量进行分析,并没有涉及相应的施肥量与产量,这导致无法全面地检验土壤养分、施肥量与产量之间的关系。此外,未能详细考虑其他可能影响土壤肥力的物理、生物、环境等因素,只能部分地解释海南火龙果园土壤养分的现状,因此,还需进一步地深入研究。
综上所述,本研究结果表明,海南火龙果园土壤肥力状况包括:土壤酸性严重,碱解氮浓度偏低,速效钾浓度中等偏低,全氮和有机碳含量中等,而磷含量较高。全氮、有机碳和速效钾是限制土壤肥力的主要指标。因此,建议在海南省大部分火龙果种植区关注土壤酸化问题,对酸性土壤采取合理的改良措施,如使用石灰或土壤调理剂来提高土壤pH值,并通过施用有机肥与氮、磷、钾化肥的配合,保持和提高土壤pH水[34]。另外,有针对性地采取平衡施肥措施,增加土壤有机物质量,并根据各个地区的养分短缺情况调整氮、磷、钾肥输入比例。在氮肥不足的果园,适当增加氮肥施用;在磷含量高的果园,减少或停用磷肥;钾肥不足的果园,适时补充钾肥。同时关注采用减肥增效关键技术,保持土壤养分均衡,加强病虫害预测预报,指导种植户精准施药;使用植物诱导免疫剂、生物农药、杀虫灯、诱虫色板、性诱剂、微生物菌剂等绿色高效产品;控制除草剂和植物生长调节剂使用;构建完善的耕地肥力监控体系,对土壤的理化特性、养分状态等农田品质变化情况进行实时跟踪,定期公开农田品质监测结果,为科学施肥提供建议,大力推广测土配方施肥,发布主要作物施肥配方,引导农户应用缓控释肥、作物专用肥、水溶肥料、微生物肥料等新型肥料产品[35]。坚持“减法”和“加法”相结合,推进化学农药化肥减量,打造绿色、生态海南农产品品牌,提高农产品附加值和竞争力,推动海南火龙果产业的持续健康发展。
相关知识
基于因子
基于环境因子的黄瓜病害预测研究
基于气象因子的森林病虫鼠害发生率预测模型研究
设施番茄果实生长与环境因子的关系
基于深度学习的城市宜居性气候因子短时预测研究
市科技计划项目《基于多重干预因子下的花椒栽培生态修复模式的研究》顺利通过中期检查
浅谈影响温室栽培的环境因子及调控措施
黄竹林土壤养分限制因子研究
植物花期调控影响因子研究
磷化氢含量与某些环境因子的关系
网址: 基于因子 https://m.huajiangbk.com/newsview2254504.html
上一篇: 一种苹果的有机生态种植方法与流程 |
下一篇: 种植火龙果需要选择什么样的土壤? |