[1]王子宁. 氨基酸肥料与化肥配施对设施番茄产量与品质及氮素效应的研究[D]. 沈阳:沈阳农业大学,2018.
[2]宁志怨,钱小强,伊兴凯,等. 氨基酸水溶肥对促进草莓产量、品质及生长特性的影响[J]. 浙江农业科学,2020,61(12):2565-2567.
[3]李敏,厉恩茂,安秀红,等. 氨基酸硒叶面肥提高苹果果实对轮纹病抗性作用[J]. 北方园艺,2019(10):67-71.
[4]赵艳茹,郭伟,张晓程,等. 含氨基酸水溶肥料在柑橘上的应用效果[J]. 西北园艺(综合),2020(1):53-55.
[5]李萍,单守明,李映龙,等. 叶面喷施氨基酸钙对盐碱地‘北玺’葡萄光合作用和果实品质的影响[J]. 中国果树,2021(12):22-26.
[6]Paungfoo-Lonhienne C,Visser J,Lonhienne T G A,et al. Past,present and future of organic nutrients[J]. Plant and Soil,2012,359(1):1-18.
[7]Warren C R. Post-uptake metabolism affects quantification of amino acid uptake[J]. New Phytologist,2012,193 (2):522-531.
[8]Hill P W,Marsden K A,Jones D L.How significant to plant N nutrition is the direct consumption of soil microbes by roots?[J]. The New Phytologist,2013,199(4):948-955.
[9]Ge T D,Song S W,Roberts P,et al. Amino acids as a nitrogen source for tomato seedlings:the use of dual-labeled (13C,15N) glycine to test for direct uptake by tomato seedlings[J]. Environmental and Experimental Botany,2009,66(3):357-361.
[10]Ma Q X,Ma J Z,Wang J,et al. Glucose and sucrose supply regulates the uptake,transport,and metabolism of nitrate in pak choi[J]. Agronomy Journal,2018,110(2):535-544.
[11]Brackin R,Nsholm T,Robinson N,et al. Nitrogen fluxes at the root-soil interface show a mismatch of nitrogen fertilizer supply and sugarcane root uptake capacity[J]. Scientific Reports,2015,5:15727.
[12]Broughton R C I,Newsham K K,Hill P W,et al. Differential acquisition of amino acid and peptide enantiomers within the soil microbial community and its implications for carbon and nitrogen cycling in soil[J]. Soil Biology and Biochemistry,2015,88:83-89.
[13]Wang X H,Feng C X,Tian L L,et al. A transceptor–channel complex couples nitrate sensing to calcium signaling in Arabidopsis[J]. Molecular Plant,2021,14(5):774-786.
[14]冯顺,李绍鹏,罗立娜,等. 外源L-谷氨酸对荔枝果实生长与着色以及营养品质的调控作用[J]. 西北植物学报,2015,35(11):2266-2272.
[15]Talukder M R,Asaduzzaman M,Tanaka H,et al. Light-emitting diodes and exogenous amino acids application improve growth and yield of strawberry plants cultivated in recycled hydroponics[J]. Scientia Horticulturae,2018,239:93-103.
[16]Mondal M F,Asaduzzaman M,Kobayashi Y,et al. Recovery from autotoxicity in strawberry by supplementation of amino acids[J]. Scientia Horticulturae,2013,164:137-144.
[17]Al-Karaki G N,Othman Y.Effect of foliar application of amino acid biostimulants on growth,macronutrient,total phenol contents and antioxidant activity of soilless grown lettuce cultivars[J]. South African Journal of Botany,2023,154:225-231.
[18]Alfosea-Simón M,Simón-Grao S,Zavala-Gonzalez E A,et al. Physiological,nutritional and metabolomic responses of tomato plants after the foliar application of amino acids aspartic acid,glutamic acid and alanine[J]. Frontiers in Plant Science,2021,11:581234.
[19]Velika A,Taraseviien ,Hallmann E,et al. Impact of foliar application of amino acids on essential oil content,odor profile,and flavonoid content of different mint varieties in field conditions[J]. Plants,2022,11(21):2938.
[20]Khan R I,Ahmad Hafiz I,Shafique M,et al. Effect of pre-harvest foliar application of amino acids and seaweed (Ascophylum nodosum) extract on growth,yield,and storage life of different bell pepper (Capsicum annuum L.) cultivars grown under hydroponic conditions[J]. Journal of Plant Nutrition,2018,41(18):2309-2319.
[21]Rafie M R,Khoshgoftarmanesh A H,Shariatmadari H,et al. Apoplastic and symplastic zinc concentration of intact leaves of field onion (Allisum cepa) as affected by foliar application of ZnSO4 and Zn-amino chelates[J]. Journal of Plant Nutrition,2023,46(5):731-742.
[22]Khan A S,Munir M,Shaheen T,et al. Supplemental foliar applied mixture of amino acids and seaweed extract improved vegetative growth,yield and quality of citrus fruit[J]. Scientia Horticulturae,2022,296:110903.
[23]Szabados L,Savouré A. Proline:a multifunctional amino acid[J]. Trends in Plant Science,2010,15(2):89-97.
[24]Mohammadrezakhani S,Rezanejad F,Hajilou J.Effect of putrescine and proline on proflies of GABA,antioxidant activities in leaves of three Citrus species in response to low temperature stress[J]. Journal of Plant Biochemistry and Biotechnology,2021,30(3):545-553.
[25]张天鹏,杨兴洪. 甜菜碱提高植物抗逆性及促进生长发育研究进展[J]. 植物生理学报,2017,53(11):1955-1962.
[26]Yan M Y,Yu X T,Zhou G,et al. GhCDPK60 positively regulates drought stress tolerance in both transgenic Arabidopsis and cotton by regulating proline content and ROS level[J]. Frontiers in Plant Science,2022,13:1072584.
[27]Ibrahim A E A,Abd El Mageed T,Abohamid Y,et al. Exogenously applied proline enhances morph-physiological responses and yield of drought-stressed maize plants grown under different irrigation systems[J]. Frontiers in Plant Science,2022,13:897027.
[28]Siddiqui Z A,Parveen A,Ahmad L,et al. Effects of graphene oxide and zinc oxide nanoparticles on growth,chlorophyll,carotenoids,proline contents and diseases of carrot[J]. Scientia Horticulturae,2019,249:374-382.
[29]dos Santos A R,Melo Y L,de Oliveira L F,et al. Exogenous silicon and proline modulate osmoprotection and antioxidant activity in cowpea under drought stress[J]. Journal of Soil Science and Plant Nutrition,2022,22(2):1692-1699.
[30]邱念伟,杨翠翠,付文诚,等. 高盐和高温胁迫下外源脯氨酸对PSⅡ颗粒的保护作用[J]. 植物生理学报,2013,49(6):586-590.
[31]左莹. 外源添加谷氨酸提高水稻抗旱性机制[D]. 福州:福建农林大学,2022:56-57.
[32]施燕华,黄玉婷,束方智,等. 外源谷氨酸对铝胁迫下多花黑麦草幼苗生长的缓解作用[J]. 草地学报,2020,28(6):1605-1614.
[33]Quan J,Zheng W W,Wu M F,et al. Glycine betaine and β-aminobutyric acid mitigate the detrimental effects of heat stress on Chinese cabbage (Brassica rapa L. ssp. pekinensis) seedlings with improved photosynthetic performance and antioxidant system[J]. Plants,2022,11(9):1213.
[34]Balfagón D,Gómez-Cadenas A,Rambla J L,et al. γ-Aminobutyric acid plays a key role in plant acclimation to a combination of high light and heat stress[J]. Plant Physiology,2022,188(4):2026-2038.
[35]Alfosea-Simón M,Zavala-Gonzalez E A,Camara-Zapata J M,et al. Effect of foliar application of amino acids on the salinity tolerance of tomato plants cultivated under hydroponic system[J]. Scientia Horticulturae,2020,272:109509.
[36]Hosseini S,Shabani L,Sabzalian M R,et al. Foliar spray of commercial seaweed and amino acid-derived biostimulants promoted phytoremediation potential and salinity stress tolerance in halophytic grass,Puccinellia distans[J]. International Journal of Phytoremediation,2023,25(4):415-429.
[37]Joshi J R,Singh V,Friedman H. Arabidopsis cysteine-rich trans-membrane module (CYSTM) small proteins play a protective role mainly against heat and UV stresses[J]. Functional Plant Biology,2020,47(3):195-202.
[38]Kim D R,Jeon C W,Cho G,et al. Glutamic acid reshapes the plant microbiota to protect plants against pathogens[J]. Microbiome,2021,9(1):244.
[39]Yang S Y,Zheng Y R,Guo Y T,et al. Faba bean-wheat intercropping and appropriate nitrogen supply control Fusarium wilt in faba bean via altering specific amino acids in the root exudate of faba bean[J]. Physiological and Molecular Plant Pathology,2023,124:101961.
[40]Moormann J,Heinemann B,Hildebrandt T M. News about amino acid metabolism in plant–microbe interactions[J]. Trends in Biochemical Sciences,2022,47(10):839-850.
[41]Feng Z W,Wu P D,Xie X L,et al. Feather-based compost drastically regulates soil microbial community and lettuce growth in a subtropical soil:the possible role of amino acids[J]. Journal of Soil Science and Plant Nutrition,2021,21(1):709-721.
[42]Acin-Albiac M,García-Jiménez B,Marín Garrido C,et al. Lettuce soil microbiome modulated by an L-α-amino acid-based biostimulant[J]. Agriculture,2023,13(2):344.
[43]Zhang X M,Tubergen P J,Agorsor I D K,et al. Elicitor-induced plant immunity relies on amino acids accumulation to delay the onset of bacterial virulence[J]. Plant Physiology,2023,192(1):601-615.
[44]Tao C N,Buswell W,Zhang P J,et al. A single amino acid transporter controls the uptake of priming-inducing beta-amino acids and the associated tradeoff between induced resistance and plant growth[J]. The Plant Cell,2022,34(12):4840-4856.
[45]Wang W J,Ling Y,Deng L L,et al. Effect of L-cysteine treatment to induce postharvest disease resistance of Monilinia fructicola in plum fruits and the possible mechanisms involved[J]. Pesticide Biochemistry and Physiology,2023,191:105367.
[46]周莲,谢小林,顾振红,等. 解淀粉芽孢杆菌3-2发酵羽毛产氨基酸[J]. 微生物学通报,2017,44(11):2511-2521.
[47]宋国安. 大豆资源的开发利用(二)[J]. 山东食品科技,2004,6(12):2-4.
[48]金虎,李坤朋,黄凤洪,等. 菜籽饼粕生物转化与高值化利用技术研究进展[J]. 中国油料作物学报,2014,36(4):545-550.
[49]罗玉常,窦文芳,张晓梅,等. 谷氨酸棒杆菌ilvE基因的敲除对相关氨基酸合成的影响[J]. 生物技术通报,2012(11):185-191.
[50]穆军. 废弃动物蛋白制备天然有机螯合肥的新工艺研究[D]. 杨凌:西北农林科技大学,2006.
[51]王玉珍. 羽毛绿色水解制备复合氨基酸的研究[D]. 重庆:重庆大学,2010.
[52]沈其荣,李荣,刘红军,等. 一种利用病死猪蛋白生产的液体氨基酸复合物及其应用:CN103804032B[P]. 2015-05-27.
[53]朱红惠,谢小林,周莲,等. 一种利用废弃羽毛生产氨基酸液肥的生物制方法:CN109650946B[P]. 2021-09-21.
[54]蔡艺菲,赵鑫阳,田晓静,等. 酶解猪血制备氨基酸液体肥工艺条件优化[J]. 现代畜牧兽医,2021(6):23-26.
[55]刘元林. 复合酶酶解牦牛血制备氨基酸液体肥的研究[D]. 兰州:西北民族大学,2021.
[56]王永红,冉炜,张富国,等. 混合菌种固体发酵菜粕生产氨基酸肥料的条件研究[J]. 中国农业科学,2009,42(10):3530-3540.
[57]中华人民共和国农业部. 含氨基酸水溶肥料:NY 1429—2010[S]. 北京:中国农业出版社,2011.
[58]沈欣,辛景树,李燕婷,等. 水溶肥料产品登记现状[J]. 中国土壤与肥料,2021(2):296-301.
[59]秦永凤,梁俊,韩明明,等. 瑞阳苹果苦痘病的发生与主要营养元素含量的关系[J]. 果树学报,2020,37(12):1907-1913.
[60]焦晓燕,王劲松,武爱莲,等. 缺硼对绿豆叶片光合特性和碳水化合物含量的影响[J]. 植物营养与肥料学报,2013,19(3):615-622.
[1]王未,毛日文,赵婷,等.玛咖营养成分分析[J].江苏农业科学,2013,41(04):285.
[2]朱伟伟,蓝建京.犀牛角氨基酸组成分析与营养价值评价[J].江苏农业科学,2013,41(04):289.
[3]顾晓云,茆广华,冯伟伟,等.灰树花残渣成分分析[J].江苏农业科学,2014,42(10):303.
Gu Xiaoyun,et al.Analysis of chemical composition of Grifola frondosa residues[J].Jiangsu Agricultural Sciences,2014,42(3):303.
[4]王豪,徐致远,刘振民,等.不同发酵温度对开菲尔产氨基酸及理化性质的影响[J].江苏农业科学,2014,42(09):236.
Wang Hao,et al.Effects of different fermentation temperatures on amino acid production and physicochemical properties of kefir[J].Jiangsu Agricultural Sciences,2014,42(3):236.
[5]董占营,何文辉,华雪铭,等.清洁虾氨基酸组成及含量分析[J].江苏农业科学,2013,41(12):318.
Dong Zhanying,et al.Analysis of components and contents of amino acids in Lysmata amboinensis[J].Jiangsu Agricultural Sciences,2013,41(3):318.
[6]姚正颖,张卫明,孙力军.续随子籽粕饲用概略营养成分测定及氨基酸组成分析[J].江苏农业科学,2013,41(12):321.
Yao Zhengying,et al.Determination of conventional nutrients and amino acid components of Euphorbia lathyris seed meal[J].Jiangsu Agricultural Sciences,2013,41(3):321.
[7]缪凌鸿,戈贤平,高启平,等.不同体型鳙鱼幼鱼营养成分与品质的比较[J].江苏农业科学,2016,44(04):334.
Miao Linghong,et al.Composition analysis and nutritional evaluation of different somatotypes of juvenile bighead carp (Aristichthys nobilis)[J].Jiangsu Agricultural Sciences,2016,44(3):334.
[8]盖江涛,沈建凯,王鹏.主要作物中PAL基因家族的鉴定和序列分析[J].江苏农业科学,2016,44(06):45.
Gai Jiangtao,et al.Identification and sequence analysis of PAL gene family in main crops[J].Jiangsu Agricultural Sciences,2016,44(3):45.
[9]王爱民,窦超,吴文静,等.中华鳖幼鳖肌肉营养成分与品质的评价[J].江苏农业科学,2016,44(01):269.
Wang Aimin,et al.Evaluation of muscle nutrition composition and quality of juvenile soft-shelled turtle[J].Jiangsu Agricultural Sciences,2016,44(3):269.
[10]白云峰,高立鹏,涂远璐,等.区域性部分非常规饲料的氨基酸组成分析[J].江苏农业科学,2014,42(04):165.
Bai Yunfeng,et al.Analysis of amino acid composition of regional unconventional feed[J].Jiangsu Agricultural Sciences,2014,42(3):165.
相关知识
含氨基酸水溶肥料应用的研究进展
含氨基酸水溶肥料用法用量,注意事项
含氨基酸水溶肥料
氨基酸水溶肥料
[有机水溶肥批发]有机水溶肥 氨基酸肥料 氨基酸水溶肥 含大量氨基酸 有机价格60元/桶
控梢美果含氨基酸水溶肥料
花之开含氨基酸水溶肥啥时候用效果好?
棉花专用含氨基酸水溶肥料
含氨基酸水溶肥料(花卉专用)
茄子专用含氨基酸水溶肥料
网址: 氨基酸的生理作用及含氨基酸水溶肥料在果树上的应用策略 https://m.huajiangbk.com/newsview2341627.html
上一篇: 盆养花的有效方法(让你的盆栽花草 |
下一篇: 硅肥是什么肥料?硅肥有什么作用? |