[1] Munns R, Gilliham M. Salinity tolerance of crops–what is the cost?[J]. New phytologist, 2015, 208(3): 668-673.
[2] Fang S, Tu W, Mu L, et al. Saline alkali water desalination project in Southern Xinjiang of China: a review of desalination planning, desalination schemes and economic analysis[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109268.
[3] Bailey-Serres J, Parker J E, Ainsworth E A, et al. Genetic strategies for improving crop yields[J]. Nature, 2019, 575(7781): 109-118.
[4] Zhao Y, Yang Z, Ding Y, et al. Over-expression of an R2R3 MYB Gene, GhMYB73, increases tolerance to salt stress in transgenic Arabidopsis[J]. Plant science, 2019, 286: 28-36.
[5] Zhang H X, Zhu W C, Feng X H, et al. Transcription factor CaSBP12 negatively regulates salt stress tolerance in pepper (Capsicum annuum L.)[J]. International journal of molecular sciences, 2020, 21(2): 444.
[6] Xu Z, Zhou J, Ren T, et al. Salt stress decreases seedling growth and development but increases quercetin and kaempferol content in Apocynum venetum[J]. Plant Biology, 2020, 22(5): 813-821.
[7] Qin H, Wang J, Chen X, et al. Rice Os DOF 15 contributes to ethylene‐inhibited primary root elongation under salt stress[J]. New Phytologist, 2019, 223(2): 798-813.
[8] Liu J G, Han X, Yang T, et al. Genome-wide transcriptional adaptation to salt stress in Populus[J]. BMC Plant Biology, 2019, 19(1): 1-14.
[9] Zolla G, Heimer Y M, Barak S. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots[J]. Journal of experimental botany, 2010, 61(1): 211-224.
[10] Dou L, He K K, Higaki T, et al. Ethylene signaling modulates cortical microtubule reassembly in response to salt stress[J]. Plant Physiology, 2018, 176(3): 2071-2081.
[11] Ahmad R M, Cheng C, Sheng J, et al. Interruption of jasmonic acid biosynthesis causes differential responses in the roots and shoots of maize seedlings against salt stress[J]. International journal of molecular sciences, 2019, 20(24): 6202.
[12] Arif Y, Singh P, Siddiqui H, et al. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance[J]. Plant Physiology and Biochemistry, 2020, 156: 64-77.
[13] Zhang Y, Li D, Zhou R, et al. Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress[J]. BMC plant biology, 2019, 19(1): 1-14.
[14] Zhao J L, Zhang L Q, Liu N, et al. Mutual regulation of receptor-like kinase SIT1 and B'κ-PP2A shapes the early response of rice to salt stress[J]. The Plant Cell, 2019, 31(9): 2131-2151.
[15] Feng X H, Zhang H X, Ali M, et al. A small heat shock protein CaHsp25. 9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.)[J]. Plant Physiology and Biochemistry, 2019, 142: 151-162.
[16] VAN ZELM E Z, Y.TESTERINK, C. Salt Tolerance Mechanisms of Plants[J]. Annu Rev Plant Biol, 2020, 71: 403-433.
[17] Ma L, Ye J, Yang Y, et al. The SOS2-SCaBP8 complex generates and fine-tunes an AtANN4-dependent calcium signature under salt stress[J]. Developmental Cell, 2019, 48(5): 697-709. e5.
[18] Jiang Z, Zhou X, Tao M, et al. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx[J]. Nature, 2019, 572(7769): 341-346.
[19] Lin Z, Li Y, Zhang Z, et al. A RAF-SnRK2 kinase cascade mediates early osmotic stress signaling in higher plants[J]. Nature communications, 2020, 11(1): 1-10.
[20] Zhu J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324.
[21] Hamilton E S, Jensen G S, Maksaev G, et al. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination[J]. Science, 2015, 350(6259): 438-441.
[22] Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt‐stress responses[J]. New Phytologist, 2018, 217(2): 523-539.
[23] Zhao C, Zayed O, Yu Z, et al. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2018, 115(51): 13123-13128.
[24] Yang Y, Guo Y. Unraveling salt stress signaling in plants[J]. Journal of Integrative Plant Biology, 2018, 60(9): 796-804.
[25] Yang Z, Wang C, Xue Y, et al. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance[J]. Nature communications, 2019, 10(1): 1-12.
[26] Yang Y, Wu Y, Ma L, et al. The Ca2+ sensor SCaBP3/CBL7 modulates plasma membrane H+-ATPase activity and promotes alkali tolerance in Arabidopsis[J]. The Plant Cell, 2019, 31(6): 1367-1384.
[27] Gong Z, Xiong L, Shi H, et al. Plant abiotic stress response and nutrient use efficiency[J]. Science China Life Sciences, 2020, 63(5): 635-674.
[28] Mishra N S, Tuteja R, Tuteja N. Signaling through MAP kinase networks in plants[J]. Archives of Biochemistry and Biophysics, 2006, 452(1): 55-68.
[29] Wang P, Shen L, Guo J, et al. Phosphatidic acid directly regulates PINOID-dependent phosphorylation and activation of the PIN-FORMED2 auxin efflux transporter in response to salt stress[J]. The Plant Cell, 2019, 31(1): 250-271.
[30] Yoshida T, Mogami J, Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants[J]. Current opinion in plant biology, 2014, 21: 133-139.
[31] Tan W, Zhang D, Zhou H, et al. Transcription factor HAT1 is a substrate of SnRK2. 3 kinase and negatively regulates ABA synthesis and signaling in Arabidopsis responding to drought[J]. PLoS Genetics, 2018, 14(4): e1007336.
[32] Choudhury F K, Rivero R M, Blumwald E, et al. Reactive oxygen species, abiotic stress and stress combination[J]. The Plant Journal, 2017, 90(5): 856-867.
[33] Luo X, Dai Y, Zheng C, et al. The ABI4‐RbohD/VTC2 regulatory module promotes Reactive Oxygen Species (ROS) accumulation to decrease seed germination under salinity stress[J]. New Phytologist, 2021, 229(2): 950-962.
[34] Wu F, Chi Y, Jiang Z, et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis[J]. Nature, 2020, 578(7796): 577-581.
[35] Che‐Othman M H, Jacoby R P, Millar A H, et al. Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress[J]. New Phytologist, 2020, 225(3): 1166-1180.
[36] Li C H, Wang G, Zhao J L, et al. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice[J]. The Plant Cell, 2014, 26(6): 2538-2553.
[37] Yu Y, Huang W, Chen H, et al. Identification of differentially expressed genes in flax (Linum usitatissimum L.) under saline–alkaline stress by digital gene expression[J]. Gene, 2014, 549(1): 113-122.
[38] Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual review of plant biology, 2002, 53(1): 247-273.
[39] Ben Saad R, Zouari N, Ben Ramdhan W, et al. Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis[J]. Plant molecular biology, 2010, 72(1): 171-190.
[40] Mishra A, Tanna B. Halophytes: potential resources for salt stress tolerance genes and promoters[J]. Frontiers in plant Science, 2017, 8: 829.
[41] Yang Y, Tang R J, Li B, et al. Overexpression of a Populus trichocarpa H+-pyrophosphatase gene PtVP1. 1 confers salt tolerance on transgenic poplar[J]. Tree Physiology, 2015, 35(6): 663-677.
[42] Jing P, Zou J, Kong L, et al. OsCCD1, a novel small calcium-binding protein with one EF-hand motif, positively regulates osmotic and salt tolerance in rice[J]. Plant Science, 2016, 247: 104-114.
[43] Shahid S. A DNA Methylation Reader with an Affinity for Salt Stress[J]. 2020.
[44] Shen X J, Wang Y Y, Zhang Y X, et al. Overexpression of the wild soybean R2R3-MYB transcription factor GsMYB15 enhances resistance to salt stress and Helicoverpa armigera in transgenic Arabidopsis[J]. International journal of molecular sciences, 2018, 19(12): 3958.
[45] Wang Y M, Wang C, Guo H Y, et al. BplMYB46 from Betula platyphylla can form homodimers and heterodimers and is involved in salt and osmotic stresses[J]. International journal of molecular sciences, 2019, 20(5): 1171.
[46] Wang L, Li Z, Lu M, et al. ThNAC13, a NAC transcription factor from Tamarix hispida, confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis[J]. Frontiers in plant science, 2017, 8: 635.
[47] Zhang X, Long Y, Huang J, et al. OsNAC45 is involved in ABA response and salt tolerance in rice[J]. Rice, 2020, 13(1): 1-13.
[48] Yang Y, Yu T F, Ma J, et al. The soybean bZIP transcription factor gene GmbZIP2 confers drought and salt resistances in transgenic plants[J]. International journal of molecular sciences, 2020, 21(2): 670.
[49] Yan H, Jia H, Chen X, et al. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production[J]. Plant and Cell Physiology, 2014, 55(12): 2060-2076.
[50] Wang Y, Liu Z, Wang P, et al. A 2-Cys peroxiredoxin gene from Tamarix hispida improved salt stress tolerance in plants[J]. BMC plant biology, 2020, 20(1): 1-10.
[51] Ma Y, Xue H, Zhang F, et al. The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression[J]. Plant biotechnology journal, 2021, 19(2): 311-323.
[52] Wang J, Ye Y, Xu M, et al. Roles of the SPL gene family and miR156 in the salt stress responses of tamarisk (Tamarix chinensis)[J]. BMC plant biology, 2019, 19(1): 1-11.
[53] Hou H, Jia H, Yan Q, et al. Overexpression of a SBP-box gene (VpSBP16) from Chinese wild Vitis species in Arabidopsis improves salinity and drought stress tolerance[J]. International journal of molecular sciences, 2018, 19(4): 940.
[54] Yu Z, Duan X, Luo L, et al. How plant hormones mediate salt stress responses[J]. Trends in plant science, 2020, 25(11): 1117-1130.
[55] Klimecka M, Bucholc M, Maszkowska J, et al. Regulation of ABA-non-activated SNF1-related protein kinase 2 signaling pathways by phosphatidic acid[J]. International journal of molecular sciences, 2020, 21(14): 4984.
[56] Takahashi F, Suzuki T, Osakabe Y, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556(7700): 235-238.
[57] Jiang A, Guo Z, Pan J, et al. The PIF1-miR408-PLANTACYANIN repression cascade regulates light-dependent seed germination[J]. The Plant Cell, 2021, 33(5): 1506-1529.
[58] Lange M J P, Lange T. Touch-induced changes in Arabidopsis morphology dependent on gibberellin breakdown[J]. Nature Plants, 2015, 1(3): 1-5.
[59] Wang C, Yang Y, Wang H, et al. Ectopic expression of a cytochrome P450 monooxygenase gene PtCYP714A3 from Populus trichocarpa reduces shoot growth and improves tolerance to salt stress in transgenic rice[J]. Plant biotechnology journal, 2016, 14(9): 1838-1851.
[60] Gao X H, Huang X Z, Xiao S L, et al. Evolutionarily conserved DELLA‐mediated gibberellin signaling in plants[J]. Journal of integrative plant biology, 2008, 50(7): 825-834.
[61] El-Shabrawi H, Kumar B, Kaul T, et al. Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice[J]. Protoplasma, 2010, 245(1): 85-96.
[62] Xu F Q, Xue H W. The ubiquitin‐proteasome system in plant responses to environments[J]. Plant, cell environment, 2019, 42(10): 2931-2944.
[63] Gobert A, Park G, Amtmann A, et al. Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport[J]. Journal of experimental botany, 2006, 57(4): 791-800.
[64] Kugler A, K?hler B, Palme K, et al. Salt-dependent regulation of a CNG channel subfamily in Arabidopsis[J]. BMC Plant Biology, 2009, 9(1): 1-11.
[65] Sicilia A, Testa G, Santoro D F, et al. RNASeq analysis of giant cane reveals the leaf transcriptome dynamics under long-term salt stress[J]. BMC plant biology, 2019, 19(1): 1-24.
[66] Ren Y, Wang W, He J, et al. Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters[J]. Ecotoxicology and environmental safety, 2020, 187: 109785.
[67] Su P, Yan J, Li W, et al. A member of wheat class III peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress[J]. BMC plant biology, 2020, 20(1): 1-15.
[68] Mekawy A M M, Assaha D V M, Ueda A. Differential Salt Sensitivity of Two Flax Cultivars Coincides with Differential Sodium Accumulation, Biosynthesis of Osmolytes and Antioxidant Enzyme Activities[J]. Journal of Plant Growth Regulation, 2020, 39(3): 1119-1126.
[69] Goswami K, Mittal D, Gautam B, et al. Mapping the salt stress-induced changes in the root miRNome in Pokkali rice[J]. Biomolecules, 2020, 10(4): 498.
[70] Li Y, Guo Q, Liu P, et al. Dual roles of the serine/arginine‐rich splicing factor SR45a in promoting and interacting with nuclear cap‐binding complex to modulate the salt‐stress response in Arabidopsis[J]. New Phytologist, 2021, 230(2): 641-655.
[71] Zhang R, Chen H, Duan M, et al. Medicago falcata MfSTMIR, an E3 ligase of endoplasmic reticulum‐associated degradation, is involved in salt stress response[J]. The Plant Journal, 2019, 98(4): 680-696.
[72] Wu Y, Wang W, Li Q, et al. The wheat E3 ligase TaPUB26 is a negative regulator in response to salt stress in transgenic Brachypodium distachyon[J]. Plant Science, 2020, 294: 110441.
[73] Takagi H, Tamiru M, Abe A, et al. MutMap accelerates breeding of a salt-tolerant rice cultivar[J]. Nature biotechnology, 2015, 33(5): 445-449.
[74] Bhatt T, Sharma A, Puri S, et al. Salt tolerance mechanisms and approaches: future scope of halotolerant genes and rice landraces[J]. Rice Science, 2020, 27(5): 368-383.
相关知识
植物对温度逆境的交叉适应性及其机制研究进展
红树植物耐水淹和高盐适应性研究进展
环境胁迫下竹类植物生态适应性研究进展
植物对逆境的响应机制研究进展
朱健康/赵春钊系统阐述近20多年来盐胁迫领域取得的研究进展
盐胁迫环境下植物生长响应机制及耐盐生理机制研究.docx
植物抗逆分子机制研究进展
叶面喷施植物生长调节剂对油茶盐胁迫适应性的影响
植物响应重金属胁迫的蛋白质组学研究进展
植物的耐盐性和适应盐碱土壤
网址: 植物盐胁迫适应性机制研究进展 https://m.huajiangbk.com/newsview2376598.html
上一篇: 植物生理学 第8版[PDF电子书 |
下一篇: 无土栽培的说明文 |