摘要: 为了对农作物病虫害进行有效防治、有效保障农作物健康状况,快速、精准地识别农作物病虫害是有效防治的前提条件。对农作物病虫害识别研究进行了综述,归纳了农作物病虫害识别方法的发展历程,重点分析了深度学习的网络结构、建模重点环节及6类典型架构特征,并结合当下的研究热点和应用前景,从构建公共数据集、集成多种成像技术、优化大模型性能等方向进行展望。
关键词: 深度学习, 农作物病虫害, 图像识别, 有效防治
Abstract: In order to effectively prevent and control crop diseases and pests, and ensure crop health, rapid and accurate identification of crop diseases and pests was a prerequisite for effective prevention and control.A review was conducted on the research on crop pest and disease identification, summarizing the development process of crop pest and disease identification methods. The focus was on analyzing the network structure, modeling key links, and six typical architectural features of deep learning. Combined with current research hotspots and application prospects, prospects were made from the construction of public datasets, integration of multiple imaging technologies, and optimization of large model performance.
Key words: deep learning, crop diseases and pests, image recognition, effective prevention and control
中图分类号:
S126
相关知识
基于深度学习的农作物病虫害图像识别技术研究进展
我国基于深度学习的图像识别技术在农作物病虫害识别中的研究进展
基于深度学习技术的农作物病虫害检测识别系统的研究
基于深度学习的病虫害智能化识别系统
基于多层EESP深度学习模型的农作物病虫害识别方法
基于深度学习的农作物病虫害识别APP源码+项目说明.zip
基于深度学习的农作物病害图像识别技术进展
基于深度学习的农作物病虫害识别系统
深度学习农作物病虫害智能识别APP开发教程
基于深度卷积神经网络的农作物病虫害识别及实现
网址: 基于深度学习的农作物病虫害识别研究进展 https://m.huajiangbk.com/newsview2381512.html
上一篇: 天津新港海关多措施助力热带水果火 |
下一篇: 林木遭网蝽 建议早应对 |