干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响
[1] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19: 259-273. Zhu Z L, Jin J Y. Fertilizer use and food security in China. Plant Nutr Fert Sci, 2013, 19: 259-273 (in Chinese with English abstract).[2] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Product Sci, 2009, 12: 3-8.
doi: 10.1626/pps.12.3[3] Tilman D K, Cassman K G, Matson P A. Agricultural sustain-ability and intensive production practices. Nature, 2002, 418: 671-678.
doi: 10.1038/nature01014[4] Peng S B. Water resources strategy and agricultural development in China. J Exp Bot, 2011, 6: 1709-1713.[5] Zhang J H. China’s success in increasing per capita food production. J Exp Bot, 2011, 62: 3707-3711.
doi: 10.1093/jxb/err132[6] Kukal S S, Hira G S, Sidhu A S. Soil matric potential-based irrigation scheduling to rice (Oryza sativa). Irrig Sci, 2005, 23: 153-159.
doi: 10.1007/s00271-005-0103-8[7] Carrijo D, Lundy M, Linquist B. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res, 2017, 203: 173-180.
doi: 10.1016/j.fcr.2016.12.002[8] 孙永健. 水氮互作对水稻产量形成和氮素利用特征的影响及其生理基础. 四川农业大学博士学位论文, 四川温江, 2010. Sun Y J. Effects of Water-nitrogen Interaction on Yield Formation and Characteristics of Nitrogen Utilization in Rice and its Physiological Basis. PhD Dissertation of Sichuan Agricultural University, Wenjiang, Sichuan, China, 2010. (in Chinese with English abstract)[9] 杨建昌, 王志琴, 朱庆森. 不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究. 中国农业科学, 1996, 29(4): 58-66. Yang J C, Wang Z Q, Zhu Q S. Effect of nitrogen nutrition on rice yield and its physiological mechanism under different status of soil moisture. Sci Agric Sin, 1996, 29(4): 58-66. (in Chinese with English abstract)[10] Cabangon R, Tuong T, Castillo E. Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient use efficiencies in typical lowland rice conditions in China. Paddy Water Environ, 2004, 2: 195-206.
doi: 10.1007/s10333-004-0062-3[11] Santiago-Arenas R, Hadi S N, Fanshuri B A, Ullah H, Datta A. Effect of nitrogen fertilizer and cultivation method on root systems of rice subjected to alternate wetting and drying irrigation. Ann Appl Biol, 2019, 175: 388-399.
doi: 10.1111/aab.12540[12] 徐国伟, 陆大克, 王贺正, 陈明灿, 李友军. 干湿交替灌溉与施氮量对水稻叶片光合性状的耦合效应. 植物营养与肥料学报, 2017, 23: 1225-1237. Xu G W, Lu D K, Wang H Z, Chen M C, Li Y J. Coupling effect of wetting and drying alternative irrigation and nitrogen application rate on photosynthetic characteristics of rice leaves. Plant Nutr Fert Sci, 2017, 23: 1225-1237. (in Chinese with English abstract)[13] 褚光, 陈婷婷, 陈松, 徐春梅, 王丹英, 章秀福. 灌溉模式与施氮量交互作用对水稻产量以及水、氮利用效率的影响. 中国水稻科学, 2017, 31: 513-523.
doi: 10.16819/j.1001-7216.2017.7048 513 Chu G, Chen T T, Chen S, Xu C M, Wang D Y, Zhang X F. Effects of interaction between irrigation regimes and nitrogen rates on rice yield and water and nitrogen use efficiencies. Chin J Rice Sci, 2017, 31: 513-523. (in Chinese with English abstract)
doi: 10.16819/j.1001-7216.2017.7048 513[14] 朱庆森, 曹显祖, 骆亦其. 水稻籽粒灌浆的生长分析. 作物学报, 1988, 14: 182-193. Zhu Q S, Cao X Z, Luo Y Q. Growth analysis on the process of grain filling in rice. Acta Agron Sin, 1988, 14: 182-193. (in Chinese with English abstract)[15] Richards F J. A flexible growth function for empirical use. J Exp Bot, 1959, 10: 290-300.
doi: 10.1093/jxb/10.2.290[16] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Res, 2003, 81: 69-81.
doi: 10.1016/S0378-4290(02)00214-9[17] Bollmark M, Kubat B, Eliasson L. Variations in endogenous cytokinin content during adventitious root formation in pea cuttings. J Plant Physiol, 1988, 132: 262-265.[18] Zhang H, Xue Y G, Wang Z Q, Yang J C, Zhang J H. Morphological and physiological traits of roots and their relationships with shoot growth in “super” rice. Field Crops Res, 2009, 113: 31-40.
doi: 10.1016/j.fcr.2009.04.004[19] 杨建昌, 杜永, 刘辉. 长江下游稻麦周年超高产栽培途径与技术. 中国农业科学, 2008, 41: 1611-1621. Yang J C, Du Y, Liu H. Cultivation approaches and techniques for annual super-high-yielding of rice and wheat in the lower reaches of Yangtze River. Sci Agric Sin, 2008, 41: 1611-1621. (in Chinese with English abstract)[20] Sandhu S S, Mahal S S, Vashist K K, Buttar G S, Brar A S, Singh Maninder. Crop and water productivity of bed transplanted rice as influenced by various levels of nitrogen and irrigation in northwest India. Agric Water Manage, 2012, 104: 32-39.
doi: 10.1016/j.agwat.2011.11.012[21] 陈新红. 土壤水分与氮素对水稻产量和品质的影响及其生理机制. 扬州大学博士学位论文, 江苏扬州, 2004. Chen X H. Effects of Soil Moisture and Nitrogen Nutrient on Grain Yield and Quality of Rice and Their Physiological Mechanism. PhD Dissertation of Yangzhou University, Yangzhou, Jiangsu, China, 2004. (in Chinese with English abstract)[22] 程建平, 曹凑贵, 蔡明历, 原保忠, 翟晶. 不同土壤水势与氮素营养对杂交水稻生理特性和产量的影响. 植物营养与肥料学报, 2008, 14: 199-206. Cheng J P, Cao C G, Cai M L, Yuan B Z, Zhai J. Effect of different nitrogen nutrition and soil water potential on physiological parameters and yield of hybrid rice. Plant Nutr Fert Sci, 2008, 14: 199-206. (in Chinese with English abstract)[23] Begg J E, Turner N C. Crop and water deficits. Adv Agron, 1976, 28: 161-218.[24] Li G H, Pan J F, Cui K H, Yuan M S, Hu Q Q, Wang W C, Mohapatra P K, Nie L X, Huang J L, Peng S B. Limitation of unloading in the developing grains is a possible cause responsible for low stem non-structural carbohydrate translocation and poor grain yield formation in rice through verification of recombinant inbred lines. Front Plant Sci, 2017, 8: e1369.[25] Okamura M, Arai-Sanoh Y, Yoshida H, Mukouyama T, Adachi S, Yabe S, Nakagawa H, Tsutsumi K, Taniguchi Y, Kobayashi N, Kondo M. Characterization of high-yielding rice cultivars with different grain-filling properties to clarify limiting factors for improving grain yield. Field Crops Res, 2018, 219: 139-147.
doi: 10.1016/j.fcr.2018.01.035[26] Asseng S, van Herwaarden A F. Analysis of the benefits to wheat yield from assimilates stored prior to grain filling in a range of environments. Plant Soil, 2003, 256: 217-229.
doi: 10.1023/A:1026231904221[27] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Liu L J. Water deficit-induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling. Agron J, 2001, 93: 196-206.
doi: 10.2134/agronj2001.931196x[28] Yang J C, Zhang J H, Wang Z Q, Zhu Q S, Wang W. Remobilization of carbon reserves in response to water-deficit during grain filling of rice. Field Crops Res, 2001, 71: 47-55.
doi: 10.1016/S0378-4290(01)00147-2[29] 杨建昌. 亚种间杂交稻籽粒充实特征及其生理基础研究. 中国农业大学博士学位论文, 北京, 1996. Yang J C. Characteristics and Physiological Bases of Grain Filling in Intersubspecific Hybrid Rice. PhD Dissertation of Chinese Agricultural University, Beijing, China, 1996. (in Chinese with English abstract)[30] Yang J C, Zhang J H, Ye Y X, Wang Z Q, Zhu Q S, Liu L J. Involvement of abscisic acid and ethylene in the responses of rice grains to water stress during filling. Plant Cell Environ, 2004, 27: 1055-1064.
doi: 10.1111/j.1365-3040.2004.01210.x[31] 杨建昌, 张建华. 促进稻麦同化物转运和籽粒灌浆的途径与机制. 科学通报, 2018, 63: 2932-2943. Yang J C, Zhang J H. Approach and mechanism in enhancing the remobilization of assimilates and grain-filling in rice and wheat. Chin Sci Bull, 2018, 63: 2932-2943. (in Chinese with English abstract)
doi: 10.1360/N972018-00577[32] Beck E, Ziegler P. Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40: 95-117.
doi: 10.1146/annurev.pp.40.060189.000523[33] Tian B, Talukder S K, Fu J M, Fritz A K, Trick H N. Expression of a rice soluble starch synthase gene in transgenic wheat improves the grain yield under heat stress conditions. Vitro Cell Develop Biol Plant, 2018, 54: 216-227.
doi: 10.1007/s11627-018-9893-2[34] Zi Y, Ding J F, Song J M, Humphreys G, Peng Y X, Li C Y, Zhu X K, Guo W S. Grain yield, starch content and activities of key enzymes of waxy and non-waxy wheat (Triticum aestivum L.). Sci Rep, 2018, 8: e4548.[35] Ahmadi A, Baker D A. The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul, 2001, 35: 81-91.
doi: 10.1023/A:1013827600528[36] Boyer J S, Westgate M E. Grain yields with limited water. J Exp Bot, 2004, 55: 2385-2394.
pmid: 15286147[37] Yang J C, Zhang J H, Wang Z Q, Xu G W, Zhu Q S. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiol, 2004, 135: 1621-1629.
pmid: 15235118[38] 占爱. 提高养分、水分吸收的根系形态和生理调控. 西北农林科技大学博士学位论文, 陕西杨凌, 2015. Zhan A. Root Morphology and Physiological Regulation to Improve Nutrient and Water Absorption. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2015. (in Chinese with English abstract)[39] Wang H, Siopongco J, Wade L J, Yamauchi A. Fractal analysis on root systems of rice plants in response to drought stress. Environ Exp Bot, 2009, 65: 338-344.
doi: 10.1016/j.envexpbot.2008.10.002[40] 徐国伟, 王贺正, 翟志华, 孙梦, 李友军. 不同水氮耦合对水稻根系形态生理、产量与氮素利用的影响. 农业工程学报, 2015, 31(10): 132-141. Xu G W, Wang H Z, Zhai Z H, Sun M, Li Y J. Effect of water and nitrogen coupling on root morphology and physiology, yield and nutrition utilization for rice. Trans CSAE, 2015, 31(10): 132-141. (in Chinese with English abstract)[41] 张凤翔, 周明耀, 周春林, 钱晓晴. 水肥耦合对水稻根系形态与活力的影响. 农业工程学报, 2006, 22(5): 197-200. Zhang F X, Zhou M Y, Zhou C L, Qian X Q. Effects of water and fertilizer coupling on root morphological characteristics and activities of rice. Trans CSAE, 2006, 22(5): 197-200. (in Chinese with English abstract)
相关知识
交替隔沟灌溉棉花群体生理指标的水氮耦合效应
干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响
施氮对滴灌冬小麦花后光合生理、灌浆特性及产量品质的影响
施氮量和花后土壤含水量对小麦旗叶衰老及粒重的影响
稻麦轮作系统中不同养分资源管理方式对水稻影响.doc
干湿交替灌溉对水稻生产和温室气体减排影响研究进展
不同灌溉量对塔克拉玛干沙漠腹地梭梭水分生理特性的影响
灌溉和施氮方式对冬小麦植株花后氮代谢及籽粒产量的影响
灌溉频率和施氮量对滴灌春小麦干物质积累及产量的影响
氮对农作物生长和生理特性的影响
网址: 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响 https://m.huajiangbk.com/newsview2406647.html