摘要:
为探究花生粕替代豆粕对禾花鲤(Cyprinus carpio rubrefusus)乳源1号生长性能及肠道健康的影响, 研究选取120尾大小相近的乳源1号, 随机分为2组, 每组3个重复。分别用50%花生粕替代豆粕的饲料(实验组)和普通配合饲料(对照组)投喂实验鱼, 开展为期8周的养殖实验, 比较分析实验组与对照组的生长性能、肠道消化酶活性、形态、转录组及菌群多样性差异。结果表明: (1)实验组增重率与特定生长率显著高于对照组(P<0.05), 饲料系数显著降低(P<0.05); (2)实验组肠道脂肪酶活性显著升高(P<0.05), 肠绒毛结构与对照组无显著差异; (3)转录组分析显示, 实验组差异表达基因显著富集于脂肪酸代谢相关通路, 包括脂肪酸代谢、脂肪酸降解和脂肪酸延伸信号通路, 提示花生粕替代豆粕后改变了与脂质代谢相关基因的表达, 进而促进脂肪利用; (4)菌群结构及多样性分析表明, 实验组肠道菌群Shannon与Simpson指数显著升高(P<0.05), 厚壁菌门丰度显著增加, 气单胞菌属等潜在致病菌丰度降低; (5) PICRUSt2功能预测表明, 在二级功能层, 实验组脂代谢通路相对丰度显著高于对照组。综上, 花生粕替代50%豆粕可显著提高禾花鲤乳源1号生长性能, 改善肠道菌群结构并增强脂质代谢能力, 为禾花鲤优质选育及豆粕减量替代技术提供理论支持。
Abstract:
To investigate the effects of replacing soybean meal with peanut meal on the growth performance and intestinal health of paddy field carp “Ruyuan No.1”, 120 individuals with similar size were randomly divided into two groups with three replicates. An 8-week feeding trial was conducted, with the experimental group receiving a diet in which 50% of the soybean meal was replaced with peanut meal, while the control group was fed a standard diet. Comparative analyses were performed on growth performance, intestinal morphology, digestive enzyme activity, transcriptome profiles, and microbial diversity. The results showed that: (1) The experimental group exhibited significantly higher weight gain rate and specific growth rate (P<0.05), along with a significantly lower feed conversion ratio (P<0.05) compared to the control group; (2) Intestinal lipase activity was significantly increased in the experimental group (P<0.05), while villus morphology showed no significant differences; (3) Transcriptome analysis revealed that differentially expressed genes in the experimental group were significantly enriched in fatty acid metabolism-related pathways, including fatty acid metabolism, fatty acid degradation, and fatty acid elongation pathway. This suggests that peanut meal may enhance lipid utilization by regulating the expression level of genes associated lipid metabolism; (4) Microbial diversity analysis revealed significantly higher Shannon and Simpson indices (P<0.05) in the experimental group, accompanied by increased abundance of Firmicutes and reduced abundance of potential pathogens like Aeromonas; (5) PICRUSt2 functional prediction demonstrated that the relative abundance of lipid metabolism pathways were significantly higher in the experimental group at the secondary functional level. In conclusion, replacing 50% soybean meal with peanut meal significantly improves growth performance, optimizes gut microbiota structure, and enhances lipid metabolism in paddy field carp “Ruyuan No.1”, providing theoretical support for high-quality breeding and soybean meal reduction strategies in aquaculture.
图 1 两组乳源1号肠道消化酶活性比较
A. 淀粉酶活性; B. 脂肪酶活性; C. 胰蛋白酶活性; *表示差异显著(P<0.05)
Figure 1. Digestive enzyme activities comparison in intestine of Ruyuan No.1 between two groups
A. activity of amylase; B. activity of lipase; C. activity of tryptase; * represents significant difference (P<0.05)
图 2 两组乳源1号肠道形态及结构比较
A和B为对照组肠道组织学; C和D为实验组肠道组织学; VL代表绒毛长度; VW代表绒毛宽度; MT代表肌层厚度
Figure 2. Intestinal histology and structure difference between two groups
A and B represent intestinal histology of control group; C and D represent intestinal histology of control group; VL. Villus length; VW. Villus width; MT. Muscle thickness
图 3 肠道转录组分析
A. 差异表达基因火山图; B. KEGG通路富集分析
Figure 3. Transcriptome analysis of intestine between two groups
A. Volcano map of differentially expressed genes (DEG); B. KEGG pathway enrich dot plot of DEGs between two groups
图 4 差异表达基因验证
Figure 4. Validation of DEGs by qPCR to assess the reliability of RNA-seq
图 5 肠道菌群的群落丰度占比
A. 门水平上; B. 属水平上
Figure 5. Community abundance ratio in intestine
A. phylum level; B. genus level
图 6 KEGG信号通路丰度差异分析
Figure 6. Differential analysis of KEGG signaling pathway abundance
表 1 实验饵料组成及营养水平(干重)
Table 1 Composition and nutritional level of experimental diets (dry matter, %)
原料组成Ingredient 组别Group 对照组 实验组 鱼粉Fish meal 15.00 15.00 豆粕Soybean meal 30.00 15.00 花生粕Peanut meal 0 15.00 棉粕Cottonseed meal 12.00 12.00 菜籽粕Rapeseed meal 10.00 10.00 面粉Wheat flour 20.00 20.00 米糠Rice bran 7.86 7.86 豆油Soybean oil 2.30 2.30 预混料Premix 1.00 1.00 磷酸二氢钙Ca(H2PO4)2 1.50 1.50 胆碱Choline chloride 0.30 0.30 防霉剂Antimold 0.03 0.03 抗氧化剂Antioxidants 0.01 0.01 合计Total 100.00 100.00 营养成分组成Proximate composition 粗蛋白质Crude protein 30.23 31.42 粗脂肪Crude lipid 5.20 5.80 粗灰分Crude ash 5.40 4.30 注: 鱼粉为秘鲁蒸汽鱼粉, 购于鹤山市广佛饲料有限公司(代购); 豆粕、花生粕、棉粕和菜籽粕均购于鹤山市广佛饲料有限公司Note: Fish meal is Peru steam fish meal and is purchased from Heshan City Guang Fo Feed Co., Ltd. Soybean meal, peanut meal, cottonseed meal, and rapeseed meal are purchased from Heshan City Guang Fo Feed Co., Ltd表 2 实验饲料氨基酸及脂肪酸组成(风干基础)
Table 2 Feed amino acid and fatty acid composition of experimental diets (%)
项目Item 组别Group 项目Item 组别Group 对照组表 3 差异表达基因qPCR验证引物信息
Table 3 The primer for confirming the RNA-seq data by qPCR
目的基因Target表 4 两组乳源1号的生长性能差异
Table 4 Differences in growth performance of Ruyuan No. 1 between two groups
指标Index 组别Group 对照组表 5 肠道转录组测序样本质量
Table 5 Quality of transcriptome sequencing samples
样本表 6 两组乳源一号肠道alpha多样性指数
Table 6 Alpha diversity index of intestine of Ruyuan No.1
项目Item 组别Group 对照组Wu X W. Monographs of Cyprinidae in China Ⅱ [M]. Shanghai: Shanghai People’s Press, 1977: 411-419. [
[2]Zhong Z X, Fan J J, Su H H, et al. Genetic sources and diversity of the paddy field carp in the Pearl River basin inferred from two mitochondrial loci [J]. Frontiers in Ecology and Evolution, 2022(10): 896609.
[3] 朱华平, 马冬梅, 李金照, 等. 禾花鲤“乳源1号” [J]. 中国水产, 2021(10): 96-101.]Zhu H P, Ma D M, Li J Z, et al. Paddy field “Ruyuan No. 1” [J]. China Fisheries, 2021(10): 96-101. [
[4] 马冬梅, 朱华平, 樊佳佳, 等. 软骨与正常华南鲤肌肉营养成分的比较分析 [J]. 大连海洋大学学报, 2019, 34(3): 381-386.]Ma D M, Zhu H P, Fan J J, et al. Comparison of nutrient composition in muscles between cartilaginous and control common carp Cyprinus carpio rubrofuscus [J]. Journal of Dalian Ocean University, 2019, 34(3): 381-386. [
[5] 邹世瑞, 孙雄林, 孙若钦. 豆粕减量替代技术在水产养殖中的研究与应用 [J]. 饲料博览, 2021(7): 51-54.]Zou S R, Sun X L, Sun R Q. Research and application of soybean meal reduction replacement technology in aquaculture [J]. Feed Review, 2021(7): 51-54. [
[6]Samtiya M, Aluko R E, Dhewa T. Plant food anti-nutritional factors and their reduction strategies: an overview [J]. Food Production, Processing and Nutrition, 2020, 2(1): 6. doi: 10.1186/s43014-020-0020-5
[7] 程牧, 范泽, 吴迪, 等. 花生粕在水产动物饲料中应用研究进展 [J]. 中国饲料, 2024, 1(7): 95-100.]Cheng M, Fan Z, Wu D, et al. Research progress on application of peanut meal in aquatic animal feed [J]. China Feed, 2024, 1(7): 95-100. [
[8]Dernekbaşı S, Öztürk D K, Karayücel İ. The Effects of using peanut meal (Arachis hypogaea L.) instead of soybean meal in rainbow trout (Oncorhynchus mykiss Walbaum, 1792) feeds on growth, biochemical composition and fillet color [J]. Journal of Anatolian Environmental and Animal Sciences, 2021, 6(1): 135-141. doi: 10.35229/jaes.854972
[9]Seck O, Fall J, Mbaye N C, et al. Effects of substituting soybean meal by unprocessed and processed peanut cake meal on the growth, body composition and survival of tilapia (Oreochromis niloticus) [J]. Journal of Biology and Life Science, 2023, 14(2): 103-116. doi: 10.5296/jbls.v14i2.21123
[10]Silva R L D, Damasceno F M, Rocha M K H R, et al. Replacement of soybean meal by peanut meal in diets for juvenile Nile tilapia, Oreochromis niloticus [J]. Latin American Journal of Aquatic Research, 2017, 45(5): 1044-1053. doi: 10.3856/vol45-issue5-fulltext-19
[11]Grosell M, Farrell A P, Brauner C J. Fish Physiology: The Multifunctional Gut of Fish [M]. London: Academic Press. 2010.
[12]Dawood M A O. Nutritional immunity of fish intestines: important insights for sustainable aquaculture [J]. Reviews in Aquaculture, 2021, 13(1): 642-663. doi: 10.1111/raq.12492
[13] 刘敏, 张海涛, 赵丽梅, 等. 豆粕减量替代在水产饲料中的应用 [J]. 中国饲料, 2023, 1(22): 120-128.]Liu M, Zhang H T, Zhao L M, et al. Research progress on the application of soybean meal reduction and replacement in aquatic feed [J]. China Feed, 2023, 1(22): 120-128. [
[14]Iqbal M, Yaqub A, Ayub M. Effects of partial and full dietary substitution of fish meal and soybean meal by sunflower meal on growth performance, feed consumption, body indices, serum chemistry and intestine morphology of Oreochromis niloticus [J]. Turkish Journal of Fisheries and Aquatic Sciences, 2022, 22(10): 1-17.
[15] 曹晓莉. 葵花粕替代豆粕对草鱼生长、肌肉品质及肠道健康的影响 [D]. 长沙: 湖南农业大学, 2021.]Cao X L. Effects of sunflower meal instead of soybean meal on the growth, muscle quality and intestinal health of grass carp (Ctenopharyngodon idella) [D]. Changsha: Hunan Agricultural University, 2021. [
[16] 姚大龙, 刘勇. 花生粕替代豆粕对草鱼生长性能的影响 [J]. 中国饲料, 2013, 1(11): 33-35.]Yao D L, Liu Y. Effects of peanut meal replacing soybean meal on growth performance of grass carp [J]. China Feed, 2013, 1(11): 33-35. [
[17] 刘毅, 周鑫蔚, 高仁法, 等. 花生粕替代豆粕对津新鲤2号生长性能、肌肉营养组成和生理生化指标的影响 [J]. 饲料研究, 2021, 44(10): 40-44.]Liu Y, Zhou X W, Gao R F, et al. Effect of soybean meal replacement with peanut meal on growth performance, muscle tissue composition and physiological and biochemical indexes of Cyprinus carpio Jian Ⅱ [J]. Feed Research, 2021, 44(10): 40-44. [
[18]Fan Z, Cheng M, Wang L S, et al. Feasibility evaluation of fermented peanut meal to replace soybean meal in the diet of common carp (Cyprinus carpio): Growth performance, serum biochemistry, intestinal health and microflora composition [J]. Aquaculture Reports, 2023(31): 101675. doi: 10.1016/j.aqrep.2023.101675
[19] 刘庆芳, 蒋竹青, 贾敏, 等. 花生粕综合利用研究进展 [J]. 食品研究与开发, 2017, 38(7): 192-195.] doi: 10.3969/j.issn.1005-6521.2017.07.043Liu Q F, Jiang Z Q, Jia M, et al. Comprehensive utilization of peanut meal [J]. Food Research and Development, 2017, 38(7): 192-195. [ doi: 10.3969/j.issn.1005-6521.2017.07.043
[20]Batal A, Dale N, Café M. Nutrient composition of peanut meal [J]. Journal of Applied Poultry Research, 2005, 14(2): 254-257. doi: 10.1093/japr/14.2.254
[21]Stalker T, Wilson R F. Peanuts: Genetics, Processing, and Utilization [M]. Amsterdam: Elsevier; 2016: 289–345.
[22]Heuzé V, Thiollet H, Tran G, et al. Peanut meal. Feedipedia-Animal Feed Resources Information System. 2018.
[23] 林东晓, 汤哲, 蔡明浪, 等. 低蛋白饲料中添加蛋氨酸对黄鳝生长性能、肝脏健康及肠道菌群的影响 [J]. 水生生物学报, 2025, 49(6) : 062508.]Lin D X, Tang Z, Cai M L, et al. Dietary methionine supplementation on growth, liver, and intestinal flora of Monopterus albus fed low-protein diet [J]. Acta Hydrobiologica Sinica, 2025, 49(6) : 062508. [
[24] 贾冰玉, 邹峰余, 徐杰杰, 等. 发酵菜籽粕对黄颡鱼表观消化率、肝脏及肠道健康的影响 [J]. 水生生物学报, 2024, 48(1): 34-43.] doi: 10.7541/2023.2023.0134Jia B Y, Zou F Y, Xu J J, et al. Fermented rapeseed meal on apparent digestibility, liver and intestinal health of yellow catfish (Tachysurus fulvidraco) [J]. Acta Hydrobiologica Sinica, 2024, 48(1): 34-43. [ doi: 10.7541/2023.2023.0134
[25]Chang J, Niu H X, Jia Y D, et al. Effects of dietary lipid levels on growth, feed utilization, digestive tract enzyme activity and lipid deposition of juvenile Manchurian trout, Brachymystax lenok (Pallas) [J]. Aquaculture Nutrition, 2018, 24(2): 694-701. doi: 10.1111/anu.12598
[26]Zhang W, Dan Z, Zhuang Y, et al. Effects of dietary lipid levels on growth, digestive enzyme activities, antioxidant capacity, and lipid metabolism in turbot (Scophthalmus maximus L.) at three different stages [J]. Aquaculture Nutrition, 2022, 2022(1): 1042263.
[27]Lei C, Ji H, Zhang J, et al. Effects of dietary DHA/EPA ratios on fatty acid composition, lipid metabolism-related enzyme activity, and gene expression of juvenile grass carp, Ctenopharyngodon idellus [J]. Journal of the World Aquaculture Society, 2016, 47(2): 287-296. doi: 10.1111/jwas.12266
[28]Chandel N S. Lipid metabolism [J]. Cold Spring Harbor Perspectives in Biology, 2021, 13(9): a040576. doi: 10.1101/cshperspect.a040576
[29]Xie D Z, Chen C Y, Dong Y W, et al. Regulation of long-chain polyunsaturated fatty acid biosynthesis in teleost fish [J]. Progress in Lipid Research, 2021(82): 101095. doi: 10.1016/j.plipres.2021.101095
[30] 殷春燕, 卫贞竹, 王悦, 等. 光唇鱼fads2基因克隆及其在不同温度对比下的表达 [J]. 浙江海洋大学学报(自然科学版), 2024, 43(4): 288-295.]Yin C Y, Wei Z Z, Wang Y, et al. Cloning and Expression of fads2 gene in Acrossocheilus fasciatus at different temperatures [J]. Journal of Zhejiang Ocean University (Natural Science), 2024, 43(4): 288-295. [
[31]Zhang Y, Sun X Q, Ye Y Q, et al. Association between the polymorphisms of fads2a and fads2b and poly-unsaturated fatty acids in common carp (Cyprinus carpio) [J]. Animals, 2021, 11(6): 1780. doi: 10.3390/ani11061780
[32]Zhang Y R, Zhang J M, Gao K D, et al. Genome-wide comparative identification and analysis of membrane FADS-like superfamily genes in freshwater economic fishes [J]. FEBS Open Bio, 2023, 13(6): 1067-1085. doi: 10.1002/2211-5463.13594
[33]Zhang Z M, Yang Q S, Liu H, et al. Potential functions of the gut microbiome and modulation strategies for improving aquatic animal growth [J]. Reviews in Aquaculture, 2025, 17(1): e12959. doi: 10.1111/raq.12959
[34]Perry W B, Lindsay E, Payne C J, et al. The role of the gut microbiome in sustainable teleost aquaculture [J]. Proceedings Biological Sciences, 2020, 287(1926): 20200184.
[35]Shin N R, Whon T W, Bae J W. Proteobacteria: microbial signature of dysbiosis in gut microbiota [J]. Trends in Biotechnology, 2015, 33(9): 496-503. doi: 10.1016/j.tibtech.2015.06.011
[36] 李全杰, 朱昊俊, 强俊, 等. 饲料中添加刺五加对吉富罗非鱼脂质沉积、抗氧化能力及肠道消化酶和微生物的影响 [J]. 水生生物学报, 2023, 47(9): 1396-1407.] doi: 10.7541/2023.2022.0281Li Q J, Zhu H J, Qiang J, et al. Fat deposition, antioxidant capacity, digestive enzymes and gut microbiome associated with diets containing Siberian ginseng in genetically improved farmed tilapia (gift, Oreochromis niloticus) [J]. Acta Hydrobiologica Sinica, 2023, 47(9): 1396-1407. [ doi: 10.7541/2023.2022.0281
[37] 高权新, 黄浩, 赵秀锌, 等. 水产动物肠道菌群及其对宿主生长性能影响研究进展 [J]. 生物资源, 2024, 46(6): 529-537.]Gao Q X, Huang H, Zhao X X, et al. Progress on gut microbiota of aquatic animals and its effects on host growth performance [J]. Biotic Resources, 2024, 46(6): 529-537. [
[38] 李珊珊, 张伟佳, 高阳, 等. 光唇鱼仔稚幼鱼肠道菌群与养殖水体细菌群落的相关性 [J]. 水生生物学报, 2023, 47(8): 1313-1322.] doi: 10.7541/2023.2022.0330Li S S, Zhang W J, Gao Y, et al. correlation between the intestinal microbiota of larval and juvenile Acrossocheilus fasciatus and bacterial community of culture water [J]. Acta Hydrobiologica Sinica, 2023, 47(8): 1313-1322. [ doi: 10.7541/2023.2022.0330
[39]Cai C F, Song L, Wang Y L, et al. Assessment of the feasibility of including high levels of rapeseed meal and peanut meal in diets of juvenile crucian carp (Carassius auratus gibelio ♀ × Cyprinus carpio ♂): Growth, immunity, intestinal morphology, and microflora [J]. Aquaculture, 2013(410): 203-215.
[40]Ye G L, Dong X H, Yang Q H, et al. Dietary replacement of fish meal with peanut meal in juvenile hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂): Growth performance, immune response and intestinal microbiota [J]. Aquaculture Reports, 2020(17): 100327. doi: 10.1016/j.aqrep.2020.100327
[41] 史洪涛. 发酵黄芪对黄河鲤生长性能、肠道菌群及代谢组影响的研究 [D]. 武汉: 华中农业大学, 2024.]Shi H Z. Study on the effects of dietary fermented Astragalus membranaceus supplemmentation on growth performance, intestinal microbiota andmetabolome in yellow river carp (Cyprinus carpio) [D]. Wuhan: Huazhong Agricultural University, 2024. [
[42] 方珍珍, 任顺, 孙学亮, 等. 不同脂肪源饲料对锦鲤生长性能、肌肉脂肪酸组成、血清生化指标、肠道消化酶活性、肠道菌群组成及脂质代谢影响 [J]. 动物营养学报, 2024, 36(7): 4562-4575.] doi: 10.12418/CJAN2024.392Fang Z Z, Ren S, Sun X L, et al. Effects of diets with different lipid sources on growth performance, muscle fatty acid composition, serum biochemical indices, intestinal digestive enzyme activities, intestinal flora composition and lipid metabolism of koi carp (Cyprinus carpio L.) [J]. Chinese Journal of Animal Nutrition, 2024, 36(7): 4562-4575. [ doi: 10.12418/CJAN2024.392
[43]Sutoyo D A, Atmaka D R, Sidabutar L. Dietary factors affecting firmicutes and bacteroidetes ratio in solving obesity problem: a literature review [J]. Media Gizi Indonesia, 2020, 15(2): 94-109. doi: 10.20473/mgi.v15i2.94-109
[44]Krajmalnik B R, Ilhan Z E, Kang D W, et al. Effects of gut microbes on nutrient absorption and energy regulation [J]. Nutrition in Clinical Practice, 2012, 27(2): 201-214. doi: 10.1177/0884533611436116
[45]Wang X, Pan J W, Chen L Q, et al. Prevalence, virulence-related genes and antimicrobial resistance of Aeromonas spp. from loach Misgurnus anguillicaudatus with skin ulcer and healthy controls in Southern China [J]. Aquaculture, 2022(552): 738040. doi: 10.1016/j.aquaculture.2022.738040
[46]Song X H, Hu X L, Sun B Y, et al. A transcriptome analysis focusing on inflammation-related genes of grass carp intestines following infection with Aeromonas hydrophila [J]. Scientific Reports, 2017, 7(1): 40777. doi: 10.1038/srep40777
[47]Wu X Q, Chen X M, Pan Y Y, et al. Changes of intestinal barrier in the process of intestinal inflammation induced by Aeromonas hydrophila in snakehead (Channa argus) [J]. Fish & Shellfish Immunology, 2024(152): 109775.
相关知识
5种植物蛋白源替代鱼粉对花鲈生长性能和消化酶活性的影响
【专题】豆粕:豆粕减量替代方案的理论基础及可行性分析
7种可以替代豆粕显著降低成本的饲料原料
相较于豆粕来说花生粕具有以下一些优势
养殖禾花鲤对稻田土壤养分、微生物多样性的影响
4种复方中草药对鲤生长性能及其体成分的影响
降本增效,将成本进行到“底”|5种可替代动物蛋白的植物!
不同大豆蛋白源替代鱼粉对洛氏鱥生长、非特异性免疫及蛋白质代谢酶活力的影响
饲用豆粕减量替代会不会增加养殖成本?农业农村部回应
花生秧花生壳的经济价值
网址: 花生粕替代豆粕对禾花鲤“乳源1号”生长性能及肠道健康的影响 https://m.huajiangbk.com/newsview2464244.html
| 上一篇: 花生炭疽病的发病原因与治疗方法( |
下一篇: 吃油炸花生米有什么好处和坏处?听 |