目录
代码:
运行结果:
代码:import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_binary = X[y != 2]
y_binary = y[y != 2]
X_train, X_test, y_train, y_test = train_test_split(X_binary, y_binary, test_size=0.2, random_state=42)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
model = LogisticRegression()
model.fit(X_train_scaled, y_train)
y_pred = model.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
print(f'模型准确度: {accuracy:.2f}')
plt.figure(figsize=(8, 6))
plt.sca
python
已于 2024-01-14 19:26:04 修改 · 541 阅读