摘要:
磺胺类药物(SAs)在水环境中普遍存在,大部分SAs以母体分子或代谢产物形式排放到环境中,地表水、地下水、海水甚至饮用水中都能检测到低浓度的SAs。因SAs排放量大、环境假性持久性强等特点,其对水生态环境和人类健康构成潜在风险。针对SAs在水环境中的归趋问题,总结了SAs在水环境中吸附、迁移、转化、降解、生物富集等典型行为规律,进一步分析SAs对水生植物、水生动物及水生微生物产生的毒性效应。结果表明:SAs在水环境中行为的研究多集中在环境介质表面的吸附特性与规律,而对SAs依赖水动力条件的迁移转化和生物富集规律研究较少;SAs在环境介质表面的吸附主要以阳离子交换和分子结合的形式发生,吸附质表面的电荷密度是决定吸附量的重要因素;SAs在水环境中广泛存在,虽然浓度水平较低,但对水生生物造成的负面影响会产生潜在的生态风险,主要表现为干预水生植物的生长发育过程,造成水生动物的特征性畸形,干扰水中微生物的群落结构与功能,最终会对整个水环境及其循环造成宏观的影响。未来应加强SAs在水环境中衰减过程的浓度和贡献率研究以及对水生生物毒性标准化测试,以期深入研究SAs生态毒理学、解决SAs污染问题。
Abstract:
Sulfonamides (SAs) are commonly found in aquatic environment, and most of them are released into the environment in the form of parent molecules or metabolites. Low concentrations of SAs can be detected in surface water, groundwater, seawater, and even drinking water, and they pose potential risks to the aquatic eco-environment and human health due to their high emissions and strong pseudo persistence in the environment. Focusing on the fate of SAs in the aquatic environment, the typical behavioral patterns of SAs in adsorption, migration, transformation, degradation and bioconcentration in the aquatic environment were summarized. Moreover, an analysis was conducted on the toxic effects of SAs on aquatic plants, aquatic animals and aquatic microorganisms. The results showed that studies on the behavior of SAs in the aqueous environment had mostly focused on its adsorption characteristics and patterns on the surface of environmental media. However, there were fewer studies on the transport transformation and bioconcentration patterns of SAs under hydrodynamic conditions. Previous studies revealed that the adsorption of SAs on the surface of environmental media mainly occurred in the form of cation exchange and molecular binding, and the charge density of the adsorbent surface was an important factor determining the adsorption amount. SAs existed widely in the aquatic environment. Although the concentration level of SAs was low, the negative impact on aquatic organisms would produce potential ecological risks, mainly manifested as interfering with the growth and development process of aquatic plants, causing the characteristic deformities of aquatic animals, interfering with the community structure and function of aquatic microorganisms, and ultimately causing macro impacts on the entire water environment and its circulation. In the future, the study on the concentration and contribution rate of SAs attenuation process in water environment and the standardized toxicity test of aquatic organisms should be strengthened, so as to further study SAs ecotoxicology and solve SAs pollution problem.
图 1 SAs的结构通式
Figure 1. General structural formula of SAs
图 2 SAs在水环境中的行为
Figure 2. Behavior of SAs in aquatic environment
图 3 磺胺类药物的水生生物毒性
Figure 3. Aquatic toxicity of sulphonamides
表 1 10种抗生素的化学结构、衰减速率常数(k)、半衰期(t1/2)和相关系数(R2)
Table 1 Chemical structures, decay rate constants (k), half-lives (t1/2) and correlation coefficients of 10 antibiotics
抗生素 化学式 化学结构 k/d−1 t1/2/d R2 磺胺嘧啶[37]C10H10N4O2SJIANG L, HU X L, XU T, et al. Prevalence of antibiotic resistance genes and their relationship with antibiotics in the Huangpu River and the drinking water sources, Shanghai, China[J]. Science of the Total Environment,2013,458/459/460:267-272.
[88]KRAIGHER B, KOSJEK T, HEATH E, et al. Influence of pharmaceutical residues on the structure of activated sludge bacterial communities in wastewater treatment bioreactors[J]. Water Research,2008,42(17):4578-4588. DOI: 10.1016/j.watres.2008.08.006
[89]LI Q W, NA G S, ZHANG L X, et al. Effects of corresponding and non-corresponding contaminants on the fate of sulfonamide and quinolone resistance genes in the Laizhou Bay, China[J]. Marine Pollution Bulletin,2018,128:475-482. DOI: 10.1016/j.marpolbul.2018.01.051
[90]NIU Z G, ZHANG K, ZHANG Y. Occurrence and distribution of antibiotic resistance genes in the coastal area of the Bohai Bay, China[J]. Marine Pollution Bulletin,2016,107(1):245-250. DOI: 10.1016/j.marpolbul.2016.03.064
[91]CHEN J Y, SU Z G, DAI T J, et al. Occurrence and distribution of antibiotic resistance genes in the sediments of the East China Sea Bays[J]. Journal of Environmental Sciences,2019,81:156-167. DOI: 10.1016/j.jes.2019.01.016
[92]DANG B J, MAO D Q, XU Y, et al. Conjugative multi-resistant plasmids in Haihe River and their impacts on the abundance and spatial distribution of antibiotic resistance genes[J]. Water Research,2017,111:81-91
[93]CHEN B W, LIANG X M, NIE X P, et al. The role of class Ⅰ integrons in the dissemination of sulfonamide resistance genes in the Pearl River and Pearl River Estuary, South China[J]. Journal of Hazardous Materials,2015,282:61-67
[94]YAN M T, XU C, HUANG Y M, et al. Tetracyclines, sulfonamides and quinolones and their corresponding resistance genes in the Three Gorges Reservoir, China[J]. Science of the Total Environment,2018,631/632:840-848
[95]BEN MAAMAR S, HU J L, HARTMANN E M. Implications of indoor microbial ecology and evolution on antibiotic resistance[J]. Journal of Exposure Science & Environmental Epidemiology,2020,30:1-15.
[96] 敖蒙蒙, 魏健, 熊兆锟, 等. 典型 β-内酰胺类抗生素在臭氧氧化降解过程中毒性变化规律研究[J]. 环境科学学报,2023,43(5):206-215.AO M M, WEI J, XIONG Z K, et al. Study on the toxicity variation of typical β 3-Lactam antibiotics during ozonation degradation[J]. Acta Scientiae Circumstantiae,2023,43(5):206-215.
[97]LONG X, WANG D L, LIN Z F, et al. The mixture toxicity of environmental contaminants containing sulfonamides and other antibiotics in Escherichia coli: differences in both the special target proteins of individual chemicals and their effective combined concentration[J]. Chemosphere,2016,158:193-203. ◇ DOI: 10.1016/j.chemosphere.2016.05.048
相关知识
水生生物多样性保护与水环境治理监测
邻苯二甲酸二丁酯对水生生物产生遗传毒性—新闻—科学网
印染废水对3种水生生物的毒性作用
手性农药选择性生物活性与毒性效应研究进展
水环境污染检测中生物监测的运用
不同剂型戊唑醇对两种水生生物的毒性研究
[doc] 草铵膦在水中的降解特性及对水生生物的毒性
水环境生态修复国内外研究进展
丙硫菌唑及其代谢物在几种生态系统中对映体选择性降解行为研究
一种基于斑马鱼模型对莨菪类药物进行毒性评价的方法
网址: 磺胺类药物水环境行为及水生生物毒性研究进展 https://m.huajiangbk.com/newsview2565252.html
| 上一篇: 拟除虫菊酯杀虫剂的毒性与健康危害 |
下一篇: 农村一种巨型豆角,长达1米,不能 |