该指数随生物量的增加而迅速增大。比值植被指数又称为绿度,为二通道反射率之比,能较好地反映植被覆盖度和生长状况的差异,特别适用于植被生长旺盛、具有高覆盖度的植被监测。归一化植被指数为两个通道反射率之差除以它们的和。在植被处于中、低覆盖度时,该指数随覆盖度的增加而迅速增大,官须当达到一定覆盖度后增长缓慢,所以适用于植被早、中期生长阶段的动态监测。蓝光、红光和近红外通道的组合可大大消除大气中气溶胶对植被指数的干扰,所组成的抗大气植被指数可大大提高植被长势监测和作物估产精度。
植被指数主要反映植被在可见光、近红外波段反负检射与土壤背景之间差异的指标,各个植被指数在一定条件下能用来定量说明植被的生长状况。在学习和使用植被指数时必须由一些基象攻本的认识:
1.健康的绿色植被在NIR和R的反射差异比较大,原因在于R对于绿色植物来说是强吸收的,NIR则是高反射高透射的
2.飞完喜从建立植被指数的目的是有效地综合各有关的光谱信号,增强植被信息,减少非植被信息
3.植被指数有明显的地域性和时效性,受植被本身、环境、大气等条件的影响
RVI=NIR/R,或两个波段反射率的异罗告阻比值。
1.绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。植被的RVI通常大于2;
2.RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素急官他几含量相关性高,可用于检测态检济属候取局和估算植物生物量
3.植被覆盖度影响RVI,当植被覆盖定继奏度较高时,RVI对植被十分敏感环亚践害持老露;当植被覆盖度<50%时,这种敏感性显著降低;
4.RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。
NDVI=(NIR-R)/(NIR+R),或两个波段反射率的计算。
1.NDVI的应用空帝弱:检测植被生长状态、植被覆盖度和消除部分辐射误差等;
2.-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,尔转次若提阻对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大
3.NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI和NDVI时会发现,RVI值增术训静犯层星呼子未措加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;
4.NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗洋院探境飞编认宪糙度等,且与植被垂切生传往动刻装现少覆盖有关
DVI=NIR-R,或两个波段反射率的计算。
1.对土壤背景的变化极为敏感
SAVITSAVIMSAVI——调整土壤亮度的植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射田革阻单敌兵手粒创斯企率的计算。
1.目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围策草异调黑发染感评树考0~1。L=0 时,表示植被覆盖度为零;L=1时,表示土壤背景的影响为零,即植被覆盖度非常高,频土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。
2.SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI3、SAVI4等改进模型。
小结:上述几种VI均受土壤背景的影响大。植绿仅市液雨担奏刚必市入被非完全覆盖时,土壤背景影响较大
k-t变换后表示绿度系的分量。
1.通过k-t变换使植甚草顾货缩被与土壤的光谱特性分离。植被生长过程的光谱些财载者掌战课坚杀买国图形呈所谓的"穗帽"状,而土壤光谱构成一条土壤亮移析拉防度线,土壤的含水量、有机质含量、粒度大小、矿物成分川历、表面粗糙度等特征的光谱变化沿土壤亮度线方向产生。
2.kt变换后得到的第一个分量表示土壤亮度,第二个分量表示绿度,第三个分量随传感器不同而表达不极及伟谓反治始地道雷同的含义。如,MSS的第三个分量表示黄度,没有确定的意义;TM的第三个分量表示湿度。
3.第衡米底师比犯信告每走去一二分量集中了>95%却的信息,这两个分量构成的二位图可以很好地反映出植被和土壤光谱特征的差异。
4.GVI是各波段辐场输技尽游例听压知射亮度值的加权和,而辐射亮度是大气辐射、太阳辐射、环境辐射的综合结果,所以GVI受外界条件影响大。
在R-NIR的二维坐标系内,植被像元到土壤亮度线的垂直距离。PVI=((S R-VR)2(SNIR-VNIR)2)1/2,S是土壤反射率,V是植被反射率。
1.较好地消除了土壤背景的影响,对大气的敏感度小于其他VI
2.PVI是在R-NIR七病血王二维数据中对GVI的模拟,两者物理意义相同
3.PVI=(DNnir-b反费)cosq-DNr´sinq,b是土壤基线与NIR截距,q是土壤基线与R的夹角。
增强型植被指数(Enhanced Vegetation Index安经言欢兰川负既当计的,即EVI)计算公式为:
植被指数
ρNIR、ρRED和ρBLUE分别代表近红外波段、红光波段和蓝光波段的反射率。
植被指数(NDV室据晶府值聚I)是检测植被生长状态、植被覆盖度和消除部分辐射误差等。NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗超度等,且与植被越很杀封露宁海故掉参掉覆盖有关。多种卫星遥感数据反演植被指数(NDVI)产品是地理国情监测云平台推出的生态环境类系列数据产品[1]之一。
目前已有产品介绍
目前已有产品包括中国2000~2009年以及内蒙古自治区、青海省、西藏自治区章治2010年8天、逐月、年均产品,分辨率为1km、0.01度,精度良好。
模型算法
NDVI的估算上采用通用的估算方法,并已通过中国科学院地理科学与资源所相关专家的判读与野外实测数据验证,空间一致性良收好。
◆TM/ETM算法如公式(1):
NDVI=(Band4-Band3)/(Band4+Band3) ………(1)
◆Modis算法如公式(2):
NDVI=(Band2-Band1)/(Band2+Band1) ………(2)
◆AVHRR算法如公式(3):
NDVI=(CH2-CH1)/(CH2+CH1) ………(3)
1.根据具体情况改进型:如MSS的DVI = B4-aB2,PVI=(B4-aB2-b)/(1+a2)1/2,SARVI = B4/(B2+b/a);RDVI=(NDVI&a当花固cute;DVI)1/2等
2.应用于高光谱数据的VI,如CARI(叶绿素吸收比值指数)和CACI(叶绿素吸收连续区指数)等
VI划分
类型 典型代表 特点
线性DVI 低LAI时,效果较好;LAI增加爱时对土壤背景敏感
比值型 NDVI、RVI增强了土壤与植被的反射对比
垂直型 PVI 低LAI时,效果较好;LAI增加爱时对土壤背景敏感
相关知识
植被指数
几种植被指数
植被指数总结(作业)
植被指数NDVI监测系统
ENVI中常见植被指数介绍.pdf
从黄土高原植被指数数据中获取森林覆盖率信息
祁连山乌鞘岭东段植被指数及土壤二氧化碳通量时空变化特征研究
共享信息
遥感地学分析
基于遥感技术的烟草花叶病监测研究
网址: 植被指数 https://m.huajiangbk.com/newsview277188.html
上一篇: 园林绿化生态综合感知监测系统“万 |
下一篇: 基于花期预测的花卉生长监测系统及 |