首页 > 分享 > 林业病虫害预警机制的思考

林业病虫害预警机制的思考

林业病虫害预警机制的思考

最新推荐文章于 2023-03-04 23:40:54 发布

子墨爸爸 于 2016-03-10 15:49:57 发布

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

病虫害预警机制

病虫害预警机制是在已建立的病虫害数据基础上进行数据信息的挖掘,因此病虫害数据库必须先期建立,管理病虫害数据库的设计如下:
这里写图片描述

病虫害预警机制的实现
** 病虫害预警机制的实现运用到的主要技术包括:
1.进行图像识别技术: 进行图像识别,从病虫害数据库中寻找到匹配度较高的十条记录,进行预警,

如:根据以往历史数据分析,XX月-XX月是XX病虫害高发季,其中XX区、xx区域病虫害较为严重,请XXX做好防护工作。

2.聚类算法的实现:

*构建指标因子

1、按照病虫害发生时间进行聚类: 最终为一年的每天分配一个指标gn:
先分年-再分月-再分日

select count(*) from 病虫害跟踪表=>病虫害发生总计次数N select count(*) from 病虫害跟踪表 where Time='n' =>第n天发生病虫害的次数zn 0<n<36512

gn=zn/N 1

2、按照发生区域进行聚类:对病虫害数据库中区域进行聚类,最终将区域生成标签fn:

select count(*) from 病虫害跟踪表 where 地域ID='@ID' =>ID=@ID发生病虫害的天数Dn1

fn=Dn/N 1

3、按照湿度进行聚类

select count(*) from 跟踪信息表 =>M --按照等间隔1进行湿度间隔划分(min,t0+1)……(x,max) select count(*) from 跟踪信息表 where 湿度 between (min,t0+1)=>m0 =>m0/M ... select count (*) from 跟踪信息表 where 湿度 between (x,max)....12345

统计各个湿度如:10至11发生的次数/病虫害次数为10-11这段湿度的指标,即为 sn 1

4、按照温度进行聚类

统计各个温度段的病虫害发生指标 ,如3,即为tn 1

5、评估信息:……

*进行聚类运算,即为预测

循环数据库中的数据信息,获得如下表的信息

这里写图片描述
而综合值的获取是对上述4-5种因子进行线性或非线性的拟合得到的一个评估值,表的数据量为:
区域个数一年天数(最大值温度-最小温度)*(最大湿度-最小湿度),而且这种病虫害数据量越多,预测就会降低偶然性因素带来的影响,但是导致数据的运算成本很大,需要进行分表分库设计?

相关知识

林业病虫害预警机制的思考
林业病虫害的监测与预警技术研究
病虫害预警监测系统
林业有害生物预警监测系统建设方案及功能需求
林业病虫害发生原因及防治策略
林业生态补偿的实践与思考
植物病虫害预测预警模型
病虫害监测系统—提供及时的病虫害预警
农业病虫害智能监测预警
林业病虫害防治工作中存在的问题及对策建议探讨.docx

网址: 林业病虫害预警机制的思考 https://m.huajiangbk.com/newsview299677.html

所属分类:花卉
上一篇: 信息工程系走进智慧大棚,探索数字
下一篇: 重庆:部门联合实施“智慧农业·数