摘要: 本研究基于1981年开展的有机肥长期定位试验,研究了不同有机肥种类、用量和施用方式对稻田生态系统碳排放、系统碳固定与净碳汇的影响,并对各处理经济效益进行了比较,为实现农业低碳、高值、高效生产提供理论参考。本研究所选取的有机肥处理包括:不施肥对照(CK);早稻施用绿肥紫云英15 t·hm-2,晚稻不施有机肥(M1);早稻施用两倍绿肥紫云英30 t·hm-2,晚稻不施有机肥(M2);早稻施用绿肥紫云英15 t·hm-2和猪粪15 t·hm-2,晚稻不施有机肥(M3);早稻施用绿肥紫云英15 t·hm-2+晚稻施用猪粪15 t·hm-2和冬季稻草覆盖4 500 kg·hm-2(M4);长期施用化肥(NPK)等5个处理。每5年于晚稻收获后采集土样测定土壤有机碳含量,并测定每年的早晚季水稻产量与生物量,用于估算系统收益与碳收支(5年平均)。结果表明:与不施肥对照相比,各施肥处理水稻产量均显著提高(P<0.05),增幅为30.88%~96.52%,且随着施肥年限的增加,M4处理增产作用最大。长期施用有机肥显著提高红壤稻田土壤固碳能力,且有机肥用量增加系统土壤固碳能力增强,M2、M3、M4处理土壤固碳量显著高于M1、NPK和CK处理;稻田植株固碳量也显著提高(P<0.05),M4和M3最高,双季稻植株固碳量为6.76~8.83 t(C)·hm-2·a-1。长期施用有机肥下稻田系统净碳汇显著增加,与对照相比施肥处理(M1、M2、M3、M4、NPK)系统净碳汇增加1.43~3.93 t(C)·hm-2·a-1,系统碳汇效应显著(P<0.05)。同一处理不同施肥年限由生产活动所引起的碳排放量保持不变,系统净碳汇量差异主要表现在系统固碳量上,其变化趋势与水稻产量变化趋势基本一致。长期施用有机肥显著降低了化肥投入,稻田生态系统经济效益显著增加(P<0.05),并以M4处理最高,达25 683.7 ¥·hm-2·a-1。综上结果表明:长期施用有机肥显著提高双季稻田碳汇效应与经济效益(P<0.05),绿肥紫云英与猪粪和秸秆配施稻田生态系统碳汇效益与经济效益较单施绿肥紫云英优势明显。
Abstract: For theoretical reference on low carbon, high profit and efficient agriculture, a long-term organic fertilizer experiment was conducted since 1981 to study the effects and economic benefits of different organic fertilizers, fertilizer doses and application methods on carbon emission and carbon sink in paddy field ecosystems. Treatments of non-fertilizer (control), Astragalus sinicus application in early rice (15 t·hm-2) (M1), double amount of A. sinicus application in early rice (30 t·hm-2) (M2), A. sinicus application (15 t·hm-2) plus pig manure application (15 t·hm-2) in early rice (M3), A. sinicus application in early rice (15 t·hm-2) plus pig manure application in late rice (15 t·hm-2) with straw mulching (4 500 kg·hm-2) in winter (M4), and NPK-chemical fertilizer in both early and late rice (NPK) were set up in the experiment. The soil samples were collected once every five years to measure organic carbon content after late rice harvest. Then rice biomass and yield were measured once every five years to evaluate the economic and carbon costs/benefits (5-year average) of the ecosystem after early rice and late rice harvest. Results showed that compared with the control, M1, M2, M3, M4 and NPK treatments significantly increased rice yield (P<0.05) in a range of 30.88%-96.52%. Increase in the years promoted rice yield most under M4 treatment. Long-term organic fertilizer application significantly increased SOC (soil organic carbon) content and soil carbon sink ability. Soil carbon sink of M2, M3 and M4 treatments were significantly higher than that of M1, NPK and CK treatments. Crop carbon sink under long-term organic fertilization treatments, which was 6.76-8.83 t(C)·hm-2·a-1 for double-cropped rice, was improved greatly. Compared with the control, net carbon sink under M1, M2, M3, M4 and NPK treatments increased significantly (P<0.05) with increment of 1.43-3.93 t(C)·hm-2·a-1. Carbon emission caused by production activity of each treatment remained unchanged for different years of fertilizer application. The differences in net carbon sink among treatments were mainly caused by variation in carbon sink of ecosystem, whose changing trend was similar to that of rice yield. Long-term organic fertilizer application significantly reduced chemical fertilizer input, but also significantly increased the economic benefits of double-cropped rice (P<0.05) to a maximum of 25 683.7 ¥·hm-2·a-1 (under M4 treatment). In conclusion, long-term organic fertilizer application significantly increased soil carbon sink and economic benefits. Besides, an integrated application of A. sinicus, pig manure and crop straw was obviously advantageous over sole application of A. sinicus in terms of increasing net carbon sink effects and economic benefits of paddy field ecosystem.
图 1 长期施用有机肥对水稻产量的影响
Figure 1. Effect of long-term organic fertilization application on the rice yield
图 2 长期施用有机肥对稻田生态系统土壤固碳量的影响
Figure 2. Effect of long-term organic fertilization on the soil carbon sink of paddy field ecosystem
图 3 不同有机肥管理模式对双季稻田生态系统净碳汇量的影响
Figure 3. Effect of different organic fertilizer managements on the net carbon sink production in the double rice eco-system
图 4 不同有机肥管理模式下稻田生态系统经济效益对比
Figure 4. Comparison of the economic benefit of paddy field ecosystem under different organic fertilizers managements
表 1 红壤稻田有机肥长期定位试验处理施肥量
Table 1 Fertilizers application rates of treatments of the long-term organic fertilizer experiment in the red paddy soil
kg·hm-2 处理 Treatment 处理描述 Treatment description 早稻 Early rice 晚稻 Late rice 过冬Winter 紫云英 Astragalus sinicus 猪粪 Pig mature 化肥 Chemical fertilizer 猪粪 Pig mature 化肥 Chemical fertilizer 稻草 Straw CK 不施肥对照Non-fertilization — — — — — — NPK 长期施用化肥 Chemical fertilization both in the early and later rice — — N: 90; P2O5: 45; K2O:75 — N: 90; P2O5: 45; K2O: 75 — M1 早稻施用绿肥紫云英,晚稻不施有机肥 Astragalus sinicus application only in the early rice 22500 — — — — — M2 早稻施用两倍绿肥紫云英 Double amount of Astragalus sinicus application only in the early rice 45000 — — — — — M3 早稻施用绿肥紫云英和猪粪,晚稻不施有机肥 Astragalus sinicus with pig manure application only in the early rice 22500 22500 — — — — M4 早稻施用绿肥紫云英+晚稻施用猪粪+ 冬季稻草覆盖 Astragalus sinicus application in the early rice and pig manure application in later rice and straw mulching in winter 22500 — — 22500 — 4500 为保障水稻正常生长,1981—1988年,M1、M2、M3、M4和NPK处理每季(NPK处理为晚稻季)补施化肥N 45 kg·hm-2、P2O5 30 kg·hm-2; 1989—1995 年,在上述化肥的基础上,每季补施K2O 37.5 kg·hm-2; 1996 年早稻开始,每季补施的N、P2O5、K2O分别增至69 kg·hm-2、30 kg·hm-2、67.5 kg·hm-2。In order to guarantee the rice growth,we added 45 kg·hm-2 N,30 kg·hm-2 P2O5 from 1981 to 1988 in both early and late rice seasons (except NPK treatment only in late rice season); 45 kg·hm-2 N,30 kg·hm-2 P2O5,37.5 kg·hm-2 K2O from 1989 to 1995 in both early and late rice seasons; and 69 kg·hm-2,30 kg·hm-2 and 67.5 kg·hm-2 from 1996 in early rice season,to M1,M2,M3,M5 and NPK treatments,respectively.表 2 试验用有机肥养分状况
Table 2 Nutrients contents of organic fertilizers applied in the experiment
有机肥 Organic fertilizer 含水量 Moisture (%) 有机质含量 Organic matter content (g·kg-1) 氮含量 Nitrogen content (g·kg-1) 磷含量 Phosphorus content (g·kg-1) 钾含量 Potassium content (g·kg-1) 紫云英 Astragalus sinicus 80.5±2.6 467±5.9 8.0±0.53 2.2±0.19 7.0±0.35 猪粪 Pig mature 70.6±2.1 340±5.1 12.0±0.47 9.0±0.42 10.0±0.44 稻草 Straw 49.2±1.8 421±3.9 6.6±0.39 2.4±0.13 15.2±0.39表 3 水稻田间生产年均投入量
Table 3 Annual input in field production for paddy field
项目 Item 投入量 Input amount 投入金额 Cost 种子 Seeds 60 kg·hm-2 750 ¥·hm-2 化肥 Fertilizers N 180 kg·hm-2,P 90 kg·hm-2,K 150 kg·hm-2 尿素 940 ¥·hm-2,氯化钾750 ¥·hm-2,钙镁磷肥 360 ¥·hm-2 Urea 940 ¥·hm-2,potassium chloride 750 ¥·hm-2,Ca-Mg phosphate fertilizer 360 ¥·hm-2 农药 Pesticides 7.5 kg·hm-2 750 ¥·hm-2 灌溉 Irrigation 7000 t·hm-2 450 ¥·hm-2 机电 Diesel and power 耗油37.5 L·hm-2,耗电70 kW·h·hm-2 Diesel 37.5 L·hm-2,power 70 kW·h·hm-2 柴油 Diesel 300 ¥·hm-2,耗电 Power 56 ¥·hm-2 Diesel 300 ¥·hm-2,power 56 ¥·hm-2 人工 Labors 30~45 person·d·hm-2 40 ¥·(person·d)-1 各项投入和价格为2015年当地调查获得。Each input and price were was got from the local investigation in 2015.表 4 不同有机肥管理模式农田生态系统碳排放量
Table 4 Carbon emission of field ecosystem under different organic fertilizer managements
处理 Treatment 碳排放 Carbon emission [t(C)·hm-2·a-1] 灌溉 Irrigation 耕作 Tillage 施肥 Fertilization 农药 Pesticide 生产活动 Labor 总排放 Total emission M1 0.54a 0.06a 0.06a 0.06a 0.48c 1.20b M2 0.54a 0.06a 0.06a 0.06a 0.56b 1.28ab M3 0.54a 0.06a 0.06a 0.06a 0.56b 1.28ab M4 0.54a 0.06a 0.06a 0.06a 0.60a 1.32a NPK 0.54a 0.06a 0.24b 0.06a 0.44d 1.34a CK 0.54a 0.06a 0c 0.06a 0.40e 1.06c表 5 不同有机肥管理模式下农田生态系统植株固碳情况
Table 5 Status of crop carbon sink in agricultural ecosystem under different organic fertilizer managements
t(C)·hm-2·a-1 处理 Treatment 施肥年限 Fertilizer time (a) 5 10 15 20 25 30 双季总量 Double season M1 5.91±0.18c 5.85±0.22d 6.83±0.19d 6.79±0.14d 7.55±0.24c 6.58±0.15d M2 6.25±0.13b 6.24±0.14b 7.19±0.12b 7.22±0.18c 8.01±0.18b 7.06±0.18bc M3 6.73±0.09a 6.74±0.03a 7.75±0.13a 7.88±0.08b 8.71±0.16a 7.71±0.20a M4 6.76±0.16a 6.90±0.09a 7.81±0.33a 8.22±0.09a 8.83±0.21a 7.97±0.06a NPK 6.62±0.09a 6.62±0.07ab 7.35±0.05b 6.98±0.17cd 7.82±0.11b 7.10±0.03c CK 4.52±0.20d 4.18±0.27e 4.03±0.30e 4.63±0.19e 5.28±0.33d 4.40±0.32e 早稻 Early season M1 3.25±0.045c 2.95±0.17d 3.36±0.17b 3.33±0.05c 4.13±0.10c 3.32±0.12c M2 3.51±0.076b 3.17±0.09c 3.49±0.09b 3.58±0.08b 4.48±0.05b 3.59±0.16b M3 3.88±0.067a 3.52±0.02a 3.87±0.05a 3.92±0.02a 4.86±0.04a 3.87±0.13a M4 3.45±0.11b 3.28±0.02bc 3.79±0.17a 3.80±0.05a 4.81±0.14a 3.88±0.02a NPK 3.77±0.10a 3.42±0.06ab 3.75±0.06a 3.52±0.06b 4.31±0.07b 3.63±0.06b CK 2.20±0.12d 1.79±0.14e 1.93±0.15c 2.01±0.15d 2.46±0.16d 1.82±0.20d 晚稻 Late season M1 2.66±0.14c 2.90±0.12c 3.47±0.07b 3.46±0.09d 3.42±0.14b 3.27±0.03d M2 2.74±0.09bc 3.07±0.15bc 3.66±0.09b 3.63±0.11c 3.54±0.14b 3.47±0.09c M3 2.86±0.13b 3.22±0.05b 3.87±0.11a 3.97±0.09b 3.85±0.12a 3.85±0.07b M4 3.31±0.05a 3.62±0.08a 4.06±0.15a 4.42±0.06a 4.02±0.08a 4.09±0.05a NPK 2.85±0.01b 3.19±0.08b 3.60±0.11b 3.46±0.11d 3.50±0.05b 3.47±0.03c CK 2.32±0.10d 2.39±0.14d 2.09±0.16c 2.62±0.04e 2.82±0.19c 2.59±0.12e CK: 不施肥对照; M1: 早稻施用绿肥紫云英15 t·hm-2, 晚稻不施有机肥; M2: 早稻施用两倍绿肥紫云英30 t·hm-2, 晚稻不施有机肥; M3: 早稻施用绿肥紫云英15 t·hm-2和猪粪15 t·hm-2, 晚稻不施有机肥; M4: 早稻施用绿肥紫云英15 t·hm-2+晚稻施用猪粪15 t·hm-2和冬季稻草覆盖4.5 t·hm-2; NPK: 长期施用化肥。同列中不同字母表示在0.05水平差异显著。CK: non-fertilization; M1: Astragalus sinicus application in the early rice (15 t·hm-2) without organic fertilization in the later rice; M2: double amount of A. sinicus application in the early rice (30 t·hm-2) without organic fertilization in the later rice; M3: A. sinicus application in the early rice (15 t·hm-2) with pig manure application (15 t·hm -2) without organic fertilization in late rice; M4: A. sinicus application in the early rice (15 t·hm-2) with pig manure application (15 t·hm-2) in later rice and straw mulching in winter (4.5 t·hm-2); NPK: chemical fertilization both in the early and later rice. Data of the same variety in each column followed different letters indicate significant at 0.05 level. [1] 马秀梅, 朱波, 杜泽林, 等. 冬水田休闲期温室气体排放通量的研究[J]. 农业环境科学学报, 2006, 24(6):1199-1202 http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200506032.htmMa X M, Zhu B, Du Z L, et al. CH4, CO2 and N2O emissions from the year-round flooded paddy field at fallow season[J]. Journal of Agro-Environment Science, 2006, 24(6):1199-1202 http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200506032.htm
[2]Martens D A. Plant residue biochemistry regulates soil carbon cycling and carbon sequestration[J]. Soil Biology and Biochemistry, 2000, 32(3):361-369 doi: 10.1016/S0038-0717(99)00162-5
[3] 段晓男, 王效科, 逯非, 等. 中国湿地生态系统固碳现状和潜力[J]. 生态学报, 2008, 28(2):463-469 doi: 10.1016/S1872-2032(08)60025-6Duan X N, Wang X K, Lu F, et al. Carbon sequestration and its potential by wetland ecosystems in China[J]. Acta Ecologica Sinica, 2008, 28(2):463-469 doi: 10.1016/S1872-2032(08)60025-6
[4]Smith P, Martino D, Cai Z, et al. Greenhouse gas mitigation in agriculture[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2008, 363(1492):789-813 doi: 10.1098/rstb.2007.2184
[5] 朱德峰, 程式华, 张玉屏, 等. 全球水稻生存现状与制约因素分析[J]. 中国农业科学, 2010, 43(3):474-479 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201003006.htmZhu D F, Chen S H, Zhang Y P, et al. Analysis of status and constraints of rice production in the world[J]. China Agriculture Science, 2010, 43(3):474-479 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201003006.htm
[6] 韩冰, 王效科, 逯非, 等. 中国农田土壤生态系统固碳现状和潜力[J]. 生态学报, 2008, 28(2):612-619 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200802020.htmHan B, WangX K, Lu F, et al. Soil carbon sequestration and its potential by cropland ecosystems in China[J]. Acta Ecologica Sinica, 2008, 28(2):612-619 http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200802020.htm
[7] 李洁静, 潘根兴, 李恋卿, 等. 红壤丘陵双季稻稻田农田生态系统不同施肥下碳汇效应及收益评估[J]. 农业环境科学学报, 2009, 28(12):2520-2525 http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200912018.htmLi J J, Pan G X, Li L Q, et al. Estimation of net carbon balance and benefits of rice-rice cropping farm of a red earth paddy under long term fertilization experiment from Jiangxi, China[J]. Journal of Agro-Environment Science, 2009, 28(12):2520-2525 http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200912018.htm
[8] 李洁静, 潘根兴, 张旭辉, 等. 太湖地区长期施肥条件下水稻-油菜轮作生态系统净碳汇效应及收益评估[J]. 应用生态学报, 2009, 20(7):1664-1670 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200907023.htmLi J J, Pan G X, Zhang X H, et al. An evaluation of net carbon sink effect and cost/benefits of a rice-rape rotation ecosystem under long-term fertilization from Tai Lake region of China[J]. Chinese Journal of Applied Ecology, 2009, 20(7):1664-1670 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200907023.htm
[9] 彭华, 纪雄辉, 刘昭兵, 等. 洞庭湖地区长期施肥条件下双季稻田生态系统净碳汇效应及收益评估[J]. 农业环境科学学报, 2009, 28(12):2526-2532 http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200912019.htmPeng H, Ji X H, Liu Z B, et al. Evaluation of net carbon sink effect and economic benefit in double rice Field ecosystem under long-term fertilization[J]. Journal of Agro-Environment Science, 2009, 28(12):2526-2532 http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200912019.htm
[10] 余喜初, 李大明, 黄庆海, 等. 鄱阳湖地区长期施肥双季稻田生态系统净碳汇效应及收益评估[J]. 农业环境科学学报, 2011, 30(9):1777-1782 http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201109019.htmYu X C, Li D M, Huang Q H, et al. Net carbon sink effects and economic benefits in double rice ecosystem under long-term fertilization in poyang lake region[J]. Journal of Agro-Environment Science, 2011, 30(9):1777-1782 http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201109019.htm
[11] 余喜初, 黄庆海, 李大明, 等. 鄱阳湖地区长期施肥双季稻稻田生态系统净碳汇效应变化特征[J]. 农业环境科学学报, 2011, 30(5):1031-1036 http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201105037.htmYu X C, Huang Q H, Li D M, et al. Dynamic of net carbon sink effects and economic benefits in double rice ecosystem under long-term fertilization in poyang lake region[J]. Journal of Agro-Environment Science, 2011, 30(5):1031-1036 http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201105037.htm
[12] 鲁如坤. 土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000Lu R K. Soil Argrochemistry Analysis Protocoes[M]. Beijing:China Agriculture Science Press, 2000
[13]Parry M L, Canziani O F, Palutikof J P, et al. Climate Change 2007:Impacts, Adaptation and Vulnerability. Contribution of Working Group Ⅱ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge:Cambridge University Press, 2007
[14] 曹云英, 段骅, 杨立年, 等. 减数分裂期高温胁迫对耐热性不同水稻品种产量的影响及其生理原因[J]. 作物学报, 2008, 34(12):2134-2142 doi: 10.1016/S1875-2780(09)60022-5Cao Y Y, Duan H, Yang L N, et al. Effect of heat-stress during meiosis on grain yield of rice cultivars differing in heat-tolerance and its physiological mechanism[J]. Acta Agronomica Sinica, 2008, 34(12):2134-2142 doi: 10.1016/S1875-2780(09)60022-5
[15] 段骅, 杨建昌. 高温对水稻的影响及其机制的研究进展[J]. 中国水稻科学, 2012, 26(4):393-400 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201204003.htmDuan H, Yang J C. Research advances in the effect of high temperature on rice and its mechanism[J]. Chinese Journal of Rice Science, 2012, 26(4):393-400 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201204003.htm
[16] 魏金连, 潘晓华, 邓强辉. 不同生育阶段夜温升高对双季水稻产量的影响[J]. 应用生态学报, 2010, 21(2):331-337 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201002012.htmWei J L, Pan X H, Deng Q H. Effects of nighttime temperature increase at different growth stages on double season rice grain yield[J]. Chinese Journal of Applied Ecology, 2010, 21(2):331-337 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201002012.htm
[17] 吴自明, 时红, 石秀兰, 等. 夜温升高对双季晚稻产量和品质影响[J]. 核农学报, 2014, 28(4):708-713 http://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201404023.htmWu Z M, Shi H, Shi X L, et al. The effects of the elevated nighttime temperature on the yield and quality of double season late rice[J]. Journal of Nuclear Agricultural Sciences, 2014, 28(4):708-713 http://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201404023.htm
[18] 梁二, 蔡典雄, 代快, 等. 中国农田土壤有机碳变化:Ⅱ土壤固碳潜力估算[J]. 中国土壤与肥料, 2010(6):87-92 http://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201006017.htmLiang E, Cai D X, Dai K, et al. Changes in soil organic carbon in croplands of China:Ⅱ Estimation of soil carbon sequestration potentials[J]. Soil and Fertilizer Sciences in China, 2010(6):87-92 http://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201006017.htm
[19] 张海林, 孙国峰, 陈继康, 等. 保护性耕作对农田碳效应影响研究进展[J]. 中国农业科学, 2009, 42(12):4275-4281 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200912021.htmZhang H L, Sun G F, Chen J K, et al. Advances in research on effects of conservation tillage on soil carbon[J]. Scientia Agricultura Sinica, 2009, 42(12):4275-4281 http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK200912021.htm
[20] 吴家梅, 纪雄辉, 彭华, 等. 南方双季稻田稻草还田的碳汇效应[J]. 应用生态学报, 2011, 22(12):3196-3202 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201112018.htmWu J M, Ji X H, Peng H, et al. Carbon sequestration effects of rice straw return in double season paddy field in Southern China[J]. Chinese Journal of Applied Ecology, 2011, 22(12):3196-3202 http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201112018.htm
[21] 赵其国, 黄季焜, 段增强. 我国生态高值农业的内涵, 模式及其研发建议[J]. 土壤, 2012, 44(5):705-711 http://www.cnki.com.cn/Article/CJFDTOTAL-TURA201205001.htmZhao Q G, Huang J K, Duan Z Q. Proposals on connotation, mode, research and development of ecological high-value agriculture of China[J]. Soils, 2012, 44(5):705-711 http://www.cnki.com.cn/Article/CJFDTOTAL-TURA201205001.htm
相关知识
不同施肥措施下双季稻田固碳减排研究
“双碳”背景下种植业减排增汇的途径与政策建议
【中国科学报】固碳新技术支撑有机水稻额外碳汇“第一拍”
鄱阳湖生态区长期施肥对稻田土壤碳汇效应与固碳潜力的影响
南亚热带不同造林模式碳汇林碳积累与碳汇功能研究
有机无机肥配施比例对红壤稻田水稻产量和土壤肥力的影响
双季稻田施用土壤调理剂的生态环境效应初探
碳汇视角下的园林绿地营建和管理
中国农业系统碳汇功能
农田土壤固碳潜力的影响因素及其调控(综述)
网址: 不同有机培肥模式下双季稻田碳汇效应与收益评估 https://m.huajiangbk.com/newsview341593.html
上一篇: 我室周锋研究员获批国家自然科学基 |
下一篇: 大型海藻碳汇效应研究进展 |