首页 > 分享 > 常见湿生植物对镉、铅污染水环境的修复效果研究

常见湿生植物对镉、铅污染水环境的修复效果研究

摘要: 采用水培法,采用不同浓度镉(Cd)和铅(Pb)的4种处理对6种常见湿生植物:豆瓣菜(Nasturtium officinale R.Br.)、水萝卜(Raphanus sativus L.)、沼生蔊菜(Rorippa islandica(Oed.) Borb.)、白芥(Sinapis alba L.)、水芹(Oenanthe javanica(Blume) DC.)和蕹菜(Ipomoea aquatica Forsk.)幼苗的生长、重金属积累与转运、抗氧化酶活性及根细胞死亡的影响进行研究。结果显示,在Cd、Pb单一及复合胁迫下,豆瓣菜、水芹的根长、根重、植株干重均显著低于对照;而经单一Pb处理的水萝卜、白芥的根长、植株干重高于对照。单一Cd处理组中,6种植物富集系数大小依次为:豆瓣菜>沼生蔊菜>水芹>水萝卜>蕹菜>白芥。Pb单一胁迫后,豆瓣菜对Pb的富集系数最小,仅为0.013。水萝卜幼苗在Cd和Pb复合胁迫下生长状况与对照相比无显著差异,且Cd、Pb转运系数增大,抗氧化酶活性较高,根细胞死亡较少,表明该物种是具有较好修复潜力的植物。

关键词: 修复  /  富集系数  /  转运系数  /  抗氧化酶  

Abstract: Four different concentrations of cadmium (Cd) and lead (Pb) were used to treat six common wetland plants, including Nasturtium officinale R. Br., Raphanus sativus L., Rorippa islandica (Oed.) Borb., Sinapis alba L., Oenanthe javanica (Blume) DC., and Ipomoea aquatica Forsk., under hydroponic culture. Results showed that root length and weight and dry plant weight in N. officinale and R. islandica were significantly lower than that in the control (CK) under both single and combined Cd and Pb stress (P < 0.05). Root length and dry plant weight in R. sativus and S. alba were higher than that in CK under Pb treatment. In the single Cd treatment group, the enrichment coefficients of the six plants were:N. officinale > R. islandica > O. javanica > R. sativus > I. aquatica > S. alba. However, the enrichment coefficient of N. officinale under Pb treatment was the smallest (0.013). The growth conditions of R. sativus seedlings under combined Cd and Pb stress did not differ significantly from that of CK, and showed increased transport coefficients, higher antioxidant enzyme activity, and lower root cell death, indicating that this species has good restorative potential.

[1]

João PV, Artur JMV, Luisa D. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies:a review[J]. J Environ Manage, 2019, 246:101-118.

[2]

Kumar V, Parihar RD, Sharma A, Bakshi P, Singh Sidhu GP, et al. Global evaluation of heavy metal content in surface water bodies:a meta-analysis using heavy metal pollution indices and multivariate statistical analyses[J]. Chemosphere, 2019, 236:234-241.

[3]

Mohd NA, Sean GP, Sohaimi AM, Cheer NB, Fauzi IA. Adsorptive nanocomposite membranes for heavy metal remediation:recent progresses and challenges[J]. Chemosphere, 2019, 232:96-112.

[4]

Mahar A, Wang P, Ali A, Awasthi MK, Lahori AH, et al. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils:a review[J]. Ecotox Environ Safe, 2016, 126:111-121.

[5] 陈银萍, 柯昀琪, 杨志娟, 杨波, 闫志强, 等. 铅胁迫下三叶鬼针草内源一氧化氮的生成及其对氧化损伤的缓解效应[J]. 植物科学学报, 2018, 36(2):264-272.

Chen YP, Ke YQ, Yang ZJ, Yang B, Yan ZQ, et al. Generation of endogenous NO and its ameliorating effects on oxidative damage in Bidens pilosa L. seedlings under Pb stress[J]. Plant Science Journal, 2018, 36(2):264-272.

[6]

Abreu CA, Coscione AR, Pires AM, Jorge PF. Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments[J]. J Geochem Explor, 2012, 123:3-7.

[7]

Jin ZM, Deng SQ, Wen YC, Jin YF, Pan L, et al. Application of simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils[J]. Sci Total Environ, 2019, 697:134-148.

[8]

Amina K, Safdar A, Muhammad F. Heavy metal phytoextraction potential of indigenous tree species of the family fabaceae[J]. Int J Phytoremediat, 2019, 21(3):251-258.

[9] 杨樱, 张世熔, 李婷, 姜洪敏, 陈红琳. 铜、铅在车前草中的亚细胞分配[J]. 环境科学学报, 2009, 29(9):1964-1969.

Yang Y, Zhang SR, Li T, Jiang HM, Chen HL. Subcellular distributions of copper and lead in herba plantaginis[J]. Acta Scientiae Circumstantiae, 2009, 29(9):1964-1969.

[10]

Mani D, Kumar C. Biotechnological advances in bioremediation of heavy metals contaminated ecosystems:an overview with special reference to phytoremediation[J]. Int J Environ Sci Te, 2014, 11(3):843-872.

[11] 任珺, 陶玲, 杨倩, 余方可. 芦苇、菖蒲和水葱对水体中Cd富集能力的研究[J]. 农业环境科学学报, 2010, 29(9):1757-1762.

Ren J, Tao L, Yang Q, Yu FK. Accumulation ability of Cd in water for Phragmites australis, Acorus calamus and Scirpus tabernaemontani[J]. Journal of Agro-Environment Science, 2010, 29(9):1757-1762.

[12] 李康, 李丹青, 张佳平, 夏宜平. 鸢尾属植物种子休眠研究进展[J]. 植物科学学报, 2016, 34(4):662-668.

Li K, Li DQ, Zhang JP, Xia YP. Review on seed dormancy in iris[J]. Plant Science Journal, 2016, 34(4):662-668.

[13] 刁晓华,高亦珂. 四种鸢尾属植物种子休眠和萌发研究[J]. 种子, 2006, 25(4):41-44.

Diao XH, Gao YK. Study on dormancy and germination of four iris species seeds[J]. Seed, 2006, 25(4):41-44.

[14] 刘少文, 焦如珍, 董玉红, 刘彩霞. 土壤重金属污染的生物修复研究进展[J]. 林业科学, 2017, 53(5):146-155.

Liu SW, Jiao RZ, Dong YH, Liu CX. Research progress in bioremediation of heavy-metal contaminated soil[J]. Scientia Silvae Sinicae, 2017, 53(5):146-155.

[15]

Rascio N, Flavia NI. Heavy metal hyperaccumulating plants:how and why do they do it? And what makes them so interesting?[J]. Plant Sci, 2010, 180(2):169-181.

[16] 李晶, 栾亚宁, 孙向阳, 于海心, 祁娜, 等. 水生植物修复重金属污染水体研究进展[J]. 世界林业研究, 2015, 28(2):31-35.

Li J, Luan YN, Sun XY, Yu HX, Qi N, et al. Research advances in remediation of heavy metal contaminated water bodies by aquatic plants[J]. World Forestry Research, 2015, 28(2):31-35.

[17]

Leandro K, Vanessa ZA, Goreti RVM, Márcia MS. The use of dried matrix spot for determination of Pb and Ni in automotive gasoline by solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry[J]. Talanta, 2019, 205:105-120.

[18]

Wang CR, Liu HT, Chen JY, Tian Y, Shi J, et al. Carboxylated multi-walled carbon nanotubes aggravated biochemical and subcellular damages in leaves of broad bean (Vicia faba L.) seedlings under combined stress of lead and cadmium[J]. J Hazard Mater, 2014, 274:404-412.

[19]

Luna CM, Pastori GM, Driscoll S, Groten K, Bernard S, et al. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat[J]. J Exp Bot, 2005, 56(411):417-423.

[20] 田保华, 张彦洁, 张丽萍, 马晓丽, 金竹萍, 等. 镉/铬胁迫对谷子幼苗生长和NADPH氧化酶及抗氧化酶体系的影响[J]. 农业环境科学学报, 2016, 35(2):240-246.

Tian BH, Zhang YJ, Zhang LP, Ma XL, Jin ZP, et al. Effects of cadmium or chromium on growth and NADPH oxidase and antioxidant enzyme system of foxtail millet seedlings[J]. Journal of Agro-Environment Science, 2016, 35(2):240-246.

[21] 蒋彧, 陶炼, 何俊蓉. 兰属春剑叶艺突变体叶片结构的研究[J]. 植物科学学报, 2018, 36(1):112-118.

Jiang Y, Tao L, He JR. Structure of leaf variegation in Cymbidium tortisepalum Fukuy. var. longibracteatum[J]. Plant Science Journal, 2018, 36(1):112-118.

[22] 牛之欣, 孙丽娜, 孙铁珩. 水培条件下四种植物对Cd、Pb富集特征[J]. 生态学杂志, 2010, 29(2):261-268.

Niu ZX, Sun LN, Sun TH. Enrichment characteristics of Cd and Pb by four kinds of plant under hydroponic culture[J]. Chinese Journal of Ecology, 2010, 29(2):261-268.

[23] 邹文桐. 铅镉复合胁迫对芥菜种子萌发、幼苗生长及光合色素含量的影响[J]. 种子, 2013, 32(3):41-45.

Zou WT. Effects of combined lead and cadmium on seed germination, seedling growth and leaf photosynthetic pigment contents of Brassica juncea[J]. Seed, 2013, 32(3):41-45.

[24] 李富荣, 朱娜, 杨锐, 杜应琼, 王富华. 铅、镉单一及复合污染对11个空心菜品种种子萌发和幼苗生长效应的影响[J]. 热带作物学报, 2015, 36(11):1951-1958.

Li FR, Zhu N, Yang R, Du YQ, Wang FH. Effects of simplex and combined Pb and Cd pollution on seed germination and seedling growth of eleven Ipomoea aquatica cultivars[J]. Chinese Journal of Tropical Crops, 2015, 36(11):1951-1958.

[25] 陈俊任, 柳丹, 吴家森, 李松, 晏闻博, 等. 重金属胁迫对毛竹种子萌发及其富集效应的影响[J]. 生态学报, 2014, 34(22):6501-6509.

Chen JR, Liu D, Wu JS, Li S, Yan WB, et al. Seed germination and metal accumulation of moso bamboo (Phyllostachys pubescens) under heavy metal exposure[J]. Acta Ecologica Sinica, 2014, 34(22):6501-6509.

[26] 张义贤, 李晓科. 镉、铅及其复合污染对大麦幼苗部分生理指标的影响[J]. 植物研究, 2008, 28(1):43-46.

Zhang YX, Li XK. Effects of Cd, Pb and their combined pollution on physiological indexes in leaf of the hordeum vulgare seedling[J]. Bulletin of Botanical Research, 2008, 28(1):43-46.

[27] 彭鸣, 王焕校, 吴玉树. 镉、铅在玉米幼苗中的积累和迁移-X射线显微分析[J]. 环境科学学报, 1989, 1:61-67.

Peng M, Wang HX, Wu YS. Accumulation and transport of cadmium and lead in the seedlings of maize[J]. Acta Scientiae Circumstantiae, 1989, 1:61-67.

[28] 黄科文,林立金, 王均, 刘继, 刘磊, 等. 不同浓度褪黑素对豆瓣菜镉积累的影响[J]. 华北农学报, 2019, 34(4):140-147.

Huang KW, Lin LJ, Wang J, Liu J, Liu L, et al. Effects of different concentrations of melatonin on cadmium accumulation of Nasturtium officinale[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4):140-147.

[29] 仲灿, 葛晓敏, 倪云, 唐罗忠. 植物对土壤Cd、Pb污染的修复与抗性机理研究进展[J]. 世界林业研究, 2017, 30(1):37-43.

Zhong C, Ge XM, Ni Y, Tang LZ. Research progress of phytore-mediation technology and resistance mechanism of plant in soil polluted by Cd or Pb[J]. World Forestry Research, 2017, 30(1):37-43.

[30] 杨刚, 伍钧, 唐亚. 铅胁迫下植物抗性机制的研究进展[J]. 生态学杂志, 2005, 12:1507-1512.

Yang G, Wu J, Tang Y. Research advances in plant resistance mechanisms under lead stress[J]. Chinese Journal of Ecology, 2005, 12:1507-1512.

[31] 巴青松, 张根生, 马畅, 李桂萍, 宋运贤, 等. NO对镉胁迫下小麦根系生长发育的生理影响[J]. 植物科学学报, 2017, 35(3):398-405.

Ba QS, Zhang GS, Ma C, Li GP, Song YX, et al. Physiological effects of nitric oxide on the growth and development of wheat roots under cadmium stress[J]. Plant Science Journal, 2017, 35(3):398-405.

[32] 娄腾雪, 吕素莲, 李银心. 盐角草在Cd、Pb、Li污染盐土修复中的应用潜力[J]. 生物工程学报,2020, 36(1):1-12.

Lou TX, Lü SL, Li YX. Application potential of Salicornia europaea in remediation of Cd, Pb and Li contaminated saline soil[J]. Chinese Journal of Biotechnology, 2020, 36(1):1-12.

[33] 周玉卿,赵九洲,韩玉林. 铅、镉及其复合胁迫对黄菖蒲幼苗生长和生理抗性的影响[J]. 湿地科学,2012, 10(4):487-491.

Zhou YQ, Zhao JZ, Han YL. Effects of lead, cadmium and their compound stress on growth and hardiness physiology of Iris pseudacorus seedling[J]. Wetland Science, 2012, 10(4):487-491.

相关知识

镉污染植物修复技术
不同花生品种对土壤铅、镉污染的抗性研究
花卉对铅污染土壤的修复
生物可降解活化剂联合植物修复镉铅复合污染土壤
花卉植物修复铅污染土壤的研究现状及展望
几种花卉对铅污染土壤的修复能力
花卉植物对重金属污染土壤修复能力的研究
4种园林植物修复河道疏浚底泥中重金属污染的试验研究
5种草本植物对矿区铅污染土壤的修复研究
月季‘金玛丽’对土壤镉污染的修复研究

网址: 常见湿生植物对镉、铅污染水环境的修复效果研究 https://m.huajiangbk.com/newsview355901.html

所属分类:花卉
上一篇: Characteristics
下一篇: 园林工程花境植物配置及栽植要点