import pandas as pd #第一步数据读取 data = pd.read_csv('IrisData.csv') data.columns = ['sepal_len','sepal_wid','petal_len','petal_wid','classes'] #第二步提取特征 X = data[['sepal_len','sepal_wid','petal_len','petal_wid']].values y = data['classes'].values feature_names = ['sepal_len','sepal_wid','petal_len','petal_wid'] label_names = data['classes'].unique() #第三步对每一个特征的样 品类别做直方图 for feature in range(len(feature_names)): plt.subplot(2,2,feature+1) for label in label_names: plt.hist(X[y==label,feature],bins=10,alpha=0.5,label=label) plt.legend(loc='best') plt.show() #第四步对特征进行标准化操作 from sklearn.preprocessing import StandardScaler std_feature = StandardScaler().fit_transform(X) # 第五步 对特征去除均值,并构造协方差矩阵,也可以使用np. conv进行构造 mean_fea = std_feature.mean(axis=0) cov_matrix = (std_feature - mean_fea).T.dot(std_feature-mean_fea) #第六步使用np.1inalg.eig求出协方差矩阵的特征值和特征向量 eig_val,eig_vector = np.linalg.eig(cov_matrix) #第七步:我们将特征值和特征向量进行组合 eig_paries = [(eig_val[j],eig_vector[:,j]) for j in range(len(eig_val))] eig_vector_two = np.vstack([eig_paries[0][1],eig_paries[1][1]]) print(eig_vector_two) trans_std_X = std_feature.dot(eig_vector_two.T)
123456789101112131415161718192021222324252627282930313233
鸢尾花数据
sepal length,sepal width,petal length,petal width,Species 5.1,3.5,1.4,0.2,Setosa 4.9,3,1.4,0.2,Setosa 4.7,3.2,1.3,0.2,Setosa 4.6,3.1,1.5,0.2,Setosa 5,3.6,1.4,0.2,Setosa 5.4,3.9,1.7,0.4,Setosa 4.6,3.4,1.4,0.3,Setosa 5,3.4,1.5,0.2,Setosa 4.4,2.9,1.4,0.2,Setosa 4.9,3.1,1.5,0.1,Setosa 5.4,3.7,1.5,0.2,Setosa 4.8,3.4,1.6,0.2,Setosa 4.8,3,1.4,0.1,Setosa 4.3,3,1.1,0.1,Setosa 5.8,4,1.2,0.2,Setosa 5.7,4.4,1.5,0.4,Setosa 5.4,3.9,1.3,0.4,Setosa 5.1,3.5,1.4,0.3,Setosa 5.7,3.8,1.7,0.3,Setosa 5.1,3.8,1.5,0.3,Setosa 5.4,3.4,1.7,0.2,Setosa 5.1,3.7,1.5,0.4,Setosa 4.6,3.6,1,0.2,Setosa 5.1,3.3,1.7,0.5,Setosa 4.8,3.4,1.9,0.2,Setosa 5,3,1.6,0.2,Setosa 5,3.4,1.6,0.4,Setosa 5.2,3.5,1.5,0.2,Setosa 5.2,3.4,1.4,0.2,Setosa 4.7,3.2,1.6,0.2,Setosa 4.8,3.1,1.6,0.2,Setosa 5.4,3.4,1.5,0.4,Setosa 5.2,4.1,1.5,0.1,Setosa 5.5,4.2,1.4,0.2,Setosa 4.9,3.1,1.5,0.2,Setosa 5,3.2,1.2,0.2,Setosa 5.5,3.5,1.3,0.2,Setosa 4.9,3.6,1.4,0.1,Setosa 4.4,3,1.3,0.2,Setosa 5.1,3.4,1.5,0.2,Setosa 5,3.5,1.3,0.3,Setosa 4.5,2.3,1.3,0.3,Setosa 4.4,3.2,1.3,0.2,Setosa 5,3.5,1.6,0.6,Setosa 5.1,3.8,1.9,0.4,Setosa 4.8,3,1.4,0.3,Setosa 5.1,3.8,1.6,0.2,Setosa 4.6,3.2,1.4,0.2,Setosa 5.3,3.7,1.5,0.2,Setosa 5,3.3,1.4,0.2,Setosa 7,3.2,4.7,1.4,Versicolour 6.4,3.2,4.5,1.5,Versicolour 6.9,3.1,4.9,1.5,Versicolour 5.5,2.3,4,1.3,Versicolour 6.5,2.8,4.6,1.5,Versicolour 5.7,2.8,4.5,1.3,Versicolour 6.3,3.3,4.7,1.6,Versicolour 4.9,2.4,3.3,1,Versicolour 6.6,2.9,4.6,1.3,Versicolour 5.2,2.7,3.9,1.4,Versicolour 5,2,3.5,1,Versicolour 5.9,3,4.2,1.5,Versicolour 6,2.2,4,1,Versicolour 6.1,2.9,4.7,1.4,Versicolour 5.6,2.9,3.6,1.3,Versicolour 6.7,3.1,4.4,1.4,Versicolour 5.6,3,4.5,1.5,Versicolour 5.8,2.7,4.1,1,Versicolour 6.2,2.2,4.5,1.5,Versicolour 5.6,2.5,3.9,1.1,Versicolour 5.9,3.2,4.8,1.8,Versicolour 6.1,2.8,4,1.3,Versicolour 6.3,2.5,4.9,1.5,Versicolour 6.1,2.8,4.7,1.2,Versicolour 6.4,2.9,4.3,1.3,Versicolour 6.6,3,4.4,1.4,Versicolour 6.8,2.8,4.8,1.4,Versicolour 6.7,3,5,1.7,Versicolour 6,2.9,4.5,1.5,Versicolour 5.7,2.6,3.5,1,Versicolour 5.5,2.4,3.8,1.1,Versicolour 5.5,2.4,3.7,1,Versicolour 5.8,2.7,3.9,1.2,Versicolour 6,2.7,5.1,1.6,Versicolour 5.4,3,4.5,1.5,Versicolour 6,3.4,4.5,1.6,Versicolour 6.7,3.1,4.7,1.5,Versicolour 6.3,2.3,4.4,1.3,Versicolour 5.6,3,4.1,1.3,Versicolour 5.5,2.5,4,1.3,Versicolour 5.5,2.6,4.4,1.2,Versicolour 6.1,3,4.6,1.4,Versicolour 5.8,2.6,4,1.2,Versicolour 5,2.3,3.3,1,Versicolour 5.6,2.7,4.2,1.3,Versicolour 5.7,3,4.2,1.2,Versicolour 5.7,2.9,4.2,1.3,Versicolour 6.2,2.9,4.3,1.3,Versicolour 5.1,2.5,3,1.1,Versicolour 5.7,2.8,4.1,1.3,Versicolour 6.3,3.3,6,2.5,Virginica 5.8,2.7,5.1,1.9,Virginica 7.1,3,5.9,2.1,Virginica 6.3,2.9,5.6,1.8,Virginica 6.5,3,5.8,2.2,Virginica 7.6,3,6.6,2.1,Virginica 4.9,2.5,4.5,1.7,Virginica 7.3,2.9,6.3,1.8,Virginica 6.7,2.5,5.8,1.8,Virginica 7.2,3.6,6.1,2.5,Virginica 6.5,3.2,5.1,2,Virginica 6.4,2.7,5.3,1.9,Virginica 6.8,3,5.5,2.1,Virginica 5.7,2.5,5,2,Virginica 5.8,2.8,5.1,2.4,Virginica 6.4,3.2,5.3,2.3,Virginica 6.5,3,5.5,1.8,Virginica 7.7,3.8,6.7,2.2,Virginica 7.7,2.6,6.9,2.3,Virginica 6,2.2,5,1.5,Virginica 6.9,3.2,5.7,2.3,Virginica 5.6,2.8,4.9,2,Virginica 7.7,2.8,6.7,2,Virginica 6.3,2.7,4.9,1.8,Virginica 6.7,3.3,5.7,2.1,Virginica 7.2,3.2,6,1.8,Virginica 6.2,2.8,4.8,1.8,Virginica 6.1,3,4.9,1.8,Virginica 6.4,2.8,5.6,2.1,Virginica 7.2,3,5.8,1.6,Virginica 7.4,2.8,6.1,1.9,Virginica 7.9,3.8,6.4,2,Virginica 6.4,2.8,5.6,2.2,Virginica 6.3,2.8,5.1,1.5,Virginica 6.1,2.6,5.6,1.4,Virginica 7.7,3,6.1,2.3,Virginica 6.3,3.4,5.6,2.4,Virginica 6.4,3.1,5.5,1.8,Virginica 6,3,4.8,1.8,Virginica 6.9,3.1,5.4,2.1,Virginica 6.7,3.1,5.6,2.4,Virginica 6.9,3.1,5.1,2.3,Virginica 5.8,2.7,5.1,1.9,Virginica 6.8,3.2,5.9,2.3,Virginica 6.7,3.3,5.7,2.5,Virginica 6.7,3,5.2,2.3,Virginica 6.3,2.5,5,1.9,Virginica 6.5,3,5.2,2,Virginica 6.2,3.4,5.4,2.3,Virginica 5.9,3,5.1,1.8,Virginica
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151相关知识
A是方阵,齐次方程组 的所有的解就是A对应于特征值λ=0的特征向量。
【机器学习】鸢尾花分类:机器学习领域经典入门项目实战
机器学习入门——鸢尾花问题
实验一:鸢尾花数据集分类
鸢尾花的花语和象征(探秘鸢尾花的寓意)
计算智能课程设计(基于感知机的鸢尾花分类)
温室植物病害的图像处理及特征值提取方法的研究(一)——基于图像预处理的特征值提取方法的研究
鸢尾花花语与传说(鸢尾花的花语和神话故事)
鸢尾花的寓意和象征(鸢尾花的含义理解)
K近邻算法和鸢尾花问题
网址: 机械学习将鸢尾花的特征值和特征向量进行组合 https://m.huajiangbk.com/newsview387286.html
上一篇: 决策树对鸢尾花数据的处理实践 |
下一篇: KNN算法分类算法 |