首页 > 分享 > NDVI等植被相关指数

NDVI等植被相关指数

一、基础概念

NDVI(Normalized Difference Vegetation Index,归一化差分植被指数,标准差异植被指数),植被覆盖指数。也称为生物量指标变化,可使植被从水和土的图像范围中分类出来。

应用于检测植被生长状态、植被覆盖度和消除部分辐射误差等。

1、NDVI 能够部分消除与太阳高度角、卫星观测角、地形、云影等与大气条件有关的辐射变化的影响;  

2、NDVI 结果被限定在[-1,1]之间,避免了数据过大或过小给使用带来的不便;  

3、NDVI 是植被生长状态及植被覆盖度的最佳指示因子;  

4、非线性变换,增强了NDVI 低值部分,抑制了高值部分,导致NDVI数值容易饱和,对高植被密度区敏感性降低。

二、应用/NDVI

1、-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大;

2、NDVI的局限性表现在,用非线性拉伸的方式增强了NIR和R的反射率的对比度。对于同一幅图象,分别求RVI(NIR/R,或两个波段反射率的比值)和NDVI时会发现,RVI值增加的速度高于NDVI增加速度,即NDVI对高植被区具有较低的灵敏度;

3、NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关;

三、计算

使用ENVI计算方法:

目前我国相关部门已有产品包括中国2000~2009年以及内蒙古自治区、青海省、西藏自治区2010年8天、逐月、年均产品,分辨率为1km、0.01度,精度良好。

点击envi软件主菜单里的basic tool 然后点击band math 出现一个框写....expression里填写ndvi公式 如(b4-b3)(b4+b3)即可 (做这些工作的前提是TM影像做好几何校正、大气校正、镶嵌、裁剪之类的有必要的步骤) 。

模型算法

NDVI的估算上采用通用的估算方法,并已通过中国科学院地理科学与资源所相关专家的判读与野外实测数据验证,空间一致性良好。

◆TM/ETM算法如公式(1):NDVI=(Band4-Band3)/(Band4+Band3)

◆Modis算法如公式(2):NDVI=(Band2-Band1)/(Band2+Band1)

◆AVHRR算法如公式(3):NDVI=(CH2-CH1)/(CH2+CH1)

四、其他植被指数

RVI比值植被指数

RVI=NIR/R,或两个波段反射率的比值。

1.绿色健康植被覆盖地区的RVI远大于1,而无植被覆盖的地面(裸土、人工建筑、水体、植被枯死或严重虫害)的RVI在1附近。植被的RVI通常大于2;

2.RVI是绿色植物的灵敏指示参数,与LAI、叶干生物量(DM)、叶绿素含量相关性高,可用于检测和估算植物生物量

3.植被覆盖度影响RVI,当植被覆盖度较高时,RVI对植被十分敏感;当植被覆盖度<50%时,这种敏感性显著降低;

4.RVI受大气条件影响,大气效应大大降低对植被检测的灵敏度,所以在计算前需要进行大气校正,或用反射率计算RVI。

GVI

绿度植被指数

k-t变换后表示绿度的分量。

1.通过k-t变换使植被与土壤的光谱特性分离。植被生长过程的光谱图形呈所谓的"穗帽"状,而土壤光谱构成一条土壤亮度线,土壤的含水量、有机质含量、粒度大小、矿物成分、表面粗糙度等特征的光谱变化沿土壤亮度线方向产生。

2.kt变换后得到的第一个分量表示土壤亮度,第二个分量表示绿度,第三个分量随传感器不同而表达不同的含义。如,MSS的第三个分量表示黄度,没有确定的意义;TM的第三个分量表示湿度。

3.第一二分量集中了>95%的信息,这两个分量构成的二位图可以很好地反映出植被和土壤光谱特征的差异。

4.GVI是各波段辐射亮度值的加权和,而辐射亮度是大气辐射、太阳辐射、环境辐射的综合结果,所以GVI受外界条件影响大。

PVI

垂直植被指数

在R-NIR的二维坐标系内,植被像元到土壤亮度线的垂直距离。PVI=((S R-VR)2(SNIR-VNIR)2)1/2,S是土壤反射率,V是植被反射率。

1.较好地消除了土壤背景的影响,对大气的敏感度小于其他VI

2.PVI是在R-NIR二维数据中对GVI的模拟,两者物理意义相同

3.PVI=(DNnir-b)cosq-DNr&acute;sinq,b是土壤基线与NIR截距,q是土壤基线与R的夹角。

SAVI

土壤调节植被指数

Huete(1988)基于NDVI和大量观测数据提出土壤调节植被指数用以减小土壤背景影响。

SAVI=(NIR-R)*(1+L)/(NIR+R+L)

其中,L是随着植被密度变化的参数,取值范围从0-1,当植被覆盖度很高时为0,很低时为1。很明显,如果L=0,SAVI=NDVI。在Huete的文章中指出,对于其研究的草地和棉花田,L取0.5时SAVI消除土壤反射率的效果较好。因为很少能够知道植被密度,因此难以优化此指数。

SAVITSAVIMSAVI——调整土壤亮度的植被指数:SAVI=((NIR-R)/(NIR+R+L))(1+L),或两个波段反射率的计算。

1.目的是解释背景的光学特征变化并修正NDVI对土壤背景的敏感。与NDVI相比,增加了根据实际情况确定的土壤调节系数L,取值范围0~1。L=0时,表示土壤背景的影响为零,即植被覆盖度非常高,土壤背景的影响为零,这种情况只有在被树冠浓密的高大树木覆盖的地方才会出现。

2.SAVI仅在土壤线参数a=1,b=0(即非常理想的状态下)时才适用。因此有了TSAVI、ATSAVI、MSAVI、SAVI2、SAVI3、SAVI4等改进模型。

DVIEVI

差值环境植被指数

DVI=NIR-R,或两个波段反射率的计算。

1.对土壤背景的变化极为敏感

小结:上述几种VI均受土壤背景的影响大。植被非完全覆盖时,土壤背景影响较大

遥感数据反演植被指数

植被指数(DVI)是检测植被生长状态、植被覆盖度和消除部分辐射误差等。NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关。多种卫星遥感数据反演植被指数(NDVI)产品 [4]是地理国情监测云平台推出的生态环境类系列数据产品之一。

参考资料

NDVI。

植被指数。

你们的评论、反馈,及对你们有所用,是我整理材料和博文写作的最大的鼓励和唯一动力。欢迎讨论和关注!
没有整理与归纳的知识,一文不值!高度概括与梳理的知识,才是自己真正的知识与技能。 永远不要让自己的自由、好奇、充满创造力的想法被现实的框架所束缚,让创造力自由成长吧! 多花时间,关心他(她)人,正如别人所关心你的。理想的腾飞与实现,没有别人的支持与帮助,是万万不能的。

相关知识

基于卫星遥感的植被NDVI对气候变化响应的研究进展
植被指数NDVI监测系统
NDVI又称归一化植被指数,在遥感影像中主要用于检测植被生长状态和植被覆盖度等,
1982—2014年中国沿海地区归一化植被指数(NDVI)变化及其对极端气候的响应
青藏高原生长季植被NDVI对气候变化的响应研究
植被覆盖度的提取方法研究精讲.ppt
植被物候参数遥感研究进展(好文分享)
探讨城市热岛效应影响中植被的作用
呼伦贝尔草原NDVI时空变化及其对气候变化的响应
2000年以来中国区域植被变化及其对气候变化的响应

网址: NDVI等植被相关指数 https://m.huajiangbk.com/newsview400773.html

所属分类:花卉
上一篇: 玫瑰花与什么食物相克(玫瑰花与什
下一篇: 这条路鲜花“路”放,你走过吗?