农作物病害是农业生产的巨大威胁。以往,大量施用化学农药又带来了农业面源污染。能否在保护作物的同时,少打药或不打药? 近日,我国科学家发表的一项重大研究成果,揭示了植物免疫系统的工作原理,有望发展出新的植物防病害手段,提高农作物自身抗病虫害的能力。 日前,清华大学柴继杰团队、中国科学院遗传与发育生物学研究所周俭民团队和清华大学王宏伟团队联合在植物免疫研究领域取得历史性重大突破,发现了首个“抗病小体”,并成功解析其作用机理,为研究植物如何控制细胞死亡和免疫提供了重要线索。该成果于北京时间4月5日在国际权威学术期刊《科学》发表。 今年中央一号文件提出,加大农业面源污染治理力度,开展农业节肥节药行动,实现化肥农药使用量负增长。而我国科学家的这一重大发现意味着,利用这个“抗病小体”,人们可以想方设法更好提升植物免疫力,还能“从头到脚”地去设计更为强大的抗病虫农作物。农作物自身抗病能力提高了,化学农药的施用量自然就会大大减少。 ......阅读全文
在人类抗病毒研究的历史上,充满了诸多传奇;今天,人类迎来了抗病毒免疫研究的新时代,武汉大学生命科学院院长舒红兵和他的同道们正在这个领域书写新的篇章。 2011年12月,44岁的舒红兵当选为中国科学院院士,这是全国生命科学与医学领域最年轻的院士。一个来自重庆荣昌县偏僻乡村的山里娃,勇于进入生
抗病毒的特异性免疫因有包膜病毒和无包膜病毒而异。有些病毒能迅速引起细胞破坏,释放病毒颗粒,称为细胞破坏型感染,有些病毒感染不引起细胞破坏称为细胞非破坏型感染,根据病毒感染类型的不同,在特异性体液免疫和细胞免疫的侧重性也不相同。 (一)体液免疫1.中和病毒作用 ;病毒的表面抗原刺激机体产生特异性
抗病毒和抗细菌的非特异性免疫有许多相同之处,现将其特点给予补充。 巨噬细胞对阻止病毒感染和促进感染的恢复具有重要作用。血流中的单核细胞也能吞噬和清除病毒,中性粒细胞只能吞噬病毒,不能将其消灭,如果被吞噬的病毒不能消灭则可将病毒带到全身,引起播散。正常人血清中含有能抑制病毒感染的物质,称为病毒抑制
生化培养箱技术(technology)参数: 容积:430L 控温范围(fàn wéi):0~50℃ 温度波动度:±0.5℃ 温度均匀(jūn yún)度:±1℃ 光照度:0-3500-5500LX (光照可选,例:种子发芽可选5500LX,幼苗生长(Grow)可选7500LX或以上。生化培养箱
生化培养(to cultivate)箱技术(technology)参数: 容积:430L 控温范围(fàn wéi):0~50℃ 温度波动度:±0.5℃ 温度均匀(jūn yún)度:±1℃ 光照度:0-3500-5500LX (光照可选,例:种子发芽可选5500LX,幼苗生长(Grow)可选750
以色列特拉维夫大学和美国明尼苏达大学的科学家正在研究沙伦山羊草(Sharon goatgrass,Aegilops sharonensis)对小麦常见病菌株的抗病性,探索把沙伦山羊草用于小麦育种的可能性。 沙伦山羊草属于栽培小麦的一个远方亲缘植物,生长在以色列沿海平原和黎巴嫩的一些地区。科学家发现沙
近球小体(juxtaglomerular apparatus)由颗粒细胞、系膜(间质)细胞和致密斑三者组成。颗粒细胞是位于入球小动脉的中膜内的肌上皮样细胞,内含分泌颗粒,分泌颗粒内含肾素。系膜细胞是指入球小动脉和出球小动脉之间的一群细胞,具有吞噬功能。致密斑位于远曲小管的起始部分,此处的上皮细胞变
Auer小体有真假之分,这里所说真假是指形态相同而性质不同者。 Auer小体是细胞形态学判断髓系还是淋系急性白血病的重要特征,然而,有文献报道慢性淋巴细胞白血病/小淋巴细胞淋巴瘤(图1 、2 )、B细胞急性淋巴性白血病、滤泡淋巴瘤、幼淋巴细胞白血病、边缘区淋巴瘤以及文献早有记载
为了解抗病毒天然免疫的精细调控机制提供新线索 近日,记者从武汉大学获悉,该校生命科学学院院长舒红兵教授领导的研究组在细胞抗病毒天然免疫领域再次取得重大突破。该研究成果于3月12日发表在免疫学领域权威刊物、《细胞》(Cell)杂志子刊《免疫》(Immunity)。这是继2008年9月该研究组
在植物的免疫反应中,病原微生物可以通过向植物体内注射效应蛋白来抑制植物的免疫反应进而增强其致病性,而植物也相应进化出了一类核苷酸结合富亮氨酸重复结构域受体蛋白(nucleotide-binding leucine-rich repeat domain-containing receptor,NL
在植物的免疫反应中,病原微生物可以通过向植物体内注射效应蛋白来抑制植物的免疫反应进而增强其致病性,而植物也相应进化出了一类核苷酸结合富亮氨酸重复结构域受体蛋白(nucleotide-binding leucine-rich repeat domain-containing receptor,NL
为成功侵染植物,病原菌往往通过向植物细胞内注射效应蛋白,抑制宿主的免疫反应。而植物的NOD类受体(NLRs)可特异识别效应蛋白,并激发效应子触发的免疫反应(ETI)。但在无病原菌侵染时持续激活免疫反应对植物的正常生长发育是不利的。SUMO化修饰是一种蛋白质翻译后修饰,影响蛋白质活性、稳定性、相互
12月16日,Nature在线发表了中国科学院分子植物科学卓越创新中心研究员何祖华研究组题为NLRs guard metabolism to coordinate pattern -and effector-triggered immunity的研究论文,揭示出一条新的广谱免疫代谢调控网络。研究
近日,来自美国耶鲁大学医学院的研究人员著名国际期刊nature在线发表了他们的一项最新研究成果,他们发现在抗病毒天然免疫过程中,线粒体发挥了至关重要的作用。 在正常情况下,每个细胞内的线粒体DNA(mtDNA)有成千上万个拷贝,并且被包装成几百个高级结构,称为类核。大量mtDNA结合蛋白TFA
中国工程院院士曹雪涛团队发现,DNA甲基化酶Dnmt3a能使天然免疫细胞针对病毒感染处于一种敏感状态,一旦识别病毒入侵就可以显著产生干扰素和启动抗病毒天然免疫反应,该发现揭示了抗病毒免疫应答新型表观遗传机制,也为病毒感染性疾病防治提出了新的潜在分子靶标。成果近日发表于《自然—免疫学》。 树突状
白粉菌在自然界中广泛存在,能侵染包多种农作物和经济作物,在世界范围内给农业生产带来了严重的损失。科学家以拟南芥为模式植物,对植物抗白粉病的机理的研究有了一定的进展,已发现包括EDR2在内的调控白粉病抗性的多个关键基因。拟南芥edr2突变体表现对白粉病增强的抗性和白粉菌诱导的细胞死亡,同时edr2
生物通报道:中科院遗传与发育生物学研究所,北京大学生科院的研究人员发现了一个单子叶植物所特有的、受RSV侵染抑制的水稻负调控抗病因子miR528,这项研究揭示了miR528及其调控的靶基因在水稻与病毒相互作用过程中的抗病机制。 这一研究成果公布在Nature Plants杂志上,文章的通讯作者
2021年6月17日,美国北卡大学Jeff Dangl实验室、中科院分子植物科学卓越创新中心万里研究组和美国杜克大学裴真明实验室合作在Science发表了题为 Plant “helper” immune receptors are Ca2+-permeable non-selective cat
白粉病是一种重要的植物真菌病害,在世界范围内对农业生产造成重要损失。在先前的研究中,利用拟南芥作为模式植物,科学家们发现EDR1(ENHANCED DISEASE RESISTANCE 1)基因是调节植物对白粉病抗性的关键因子。EDR1编码一个蛋白激酶,在体外表现出蛋白激酶的活性。edr1突变体
植物如何抵抗病毒?中国科学技术大学赵忠教授团队研究发现,一种植物干细胞免疫病毒的关键因子,揭示了植物干细胞的广谱抗病毒机制。 这一研究成果9日发表在著名学术期刊《科学》(Science)上。 据介绍,科研团队通过发育生物学和植物病毒学两个领域的交叉研究,找到了植物干细胞免疫病毒的
6月21日,中国科学院武汉病毒研究所研究员周溪课题组与军事医学科学院微生物流行病研究所研究员秦成峰课题组合作,在抗病毒免疫研究方面取得新进展,揭示了RNA干扰(RNAi)通路在哺乳动物中具有抗病毒免疫功能。相关研究成果以Human virus-derived small RNAs can con
长期以来,衰老一直被认为是不可避免的,但随着抗衰老研究的进展,预防衰老的治疗越来越被认为是可行的。在抗衰老研究中,“衰老细胞”无疑是最引人注目的。衰老细胞会停止分裂,但它们并没有死亡,而是处于生长停滞的休眠状态。 更致命的是,这些衰老细胞会持续存在并在体内集聚,不断分泌许多促炎和组织重塑分子,
天然免疫系统是机体抵抗病原微生物入侵的第一道防线,它首先通过模式识别受体(PRRs)与病原体相关分子模式(PAMPs)相互识别,进一步激活一系列的免疫反应。与此同时,宿主细胞通过多种方式负调节天然免疫反应的信号通路,以保证信号传导的平衡,从而防止过度免疫反应对宿主细胞造成损伤。在抗RNA病毒天然
(一) 原理粒细胞系列的白血病细胞中形成的φ(Phi)小体与3,3,—二氨基联苯胺(DAB)及(或)过氧化氢基质液作用,以及硝酸酮处理的氢过氧化酶染色,能催化DAB氧化生成蓝色沉淀,定位于胞质中。(二) 操作步骤1 试剂配制(1) 1.25%戊二醛固定液:0.1mol/L磷酸盐缓冲液(PH
核小体是由DNA和组蛋白形成的染色质基本结构单位。每个核小体由146bp的DNA缠绕组蛋白八聚体1.75圈形成。核小体核心颗粒之间通过50bp左右的连接DNA相连。H1结合在盘绕在八聚体上的DNA双链开口处,核小体的形状类似一个扁平的碟子或一个圆柱体,此时DNA的长度压缩7倍,称染色质纤维。染色质就
人们接着用化学交联、高盐分离组蛋白,以及X衍射等方法进一步研究组蛋白多聚体的结构、排列以及怎样和DNA结合的,从而建立了核小体模型。1984年Klug和Butler进行了修正。核小体的构造可用图表示:每一个核小体结合的DNA总量为200bp左右,一般在150~250变化范围(micrococcal
程序性死亡细胞的核DNA在核小体连接处断裂成核小体片段,并向核膜下或中央异染色质区聚集形成浓缩的染色质块。随着染色质不断聚集,核纤层断裂消失,核膜在核孔处断裂,形成核碎片。同时在程序性死亡过程中,由于不断脱水,细胞质不断浓缩,但仍有选择透过性。细胞体积减小。凋亡细胞经核碎裂形成的染色质块(核碎片
核小体的构造可用图表示:每一个核小体结合的DNA总量为200bp左右,一般在150~250变化范围(micrococcal nuclease)轻微消解染色质而得知的。连接两个核小体的连接DNA (linker DNA) 是最容易受到这种酶的作用,因此微球菌核酸酶在连接DNA处被切断,此时每个重复单位
(一) 原理粒细胞系列的白血病细胞中形成的φ(Phi)小体与3,3,—二氨基联苯胺(DAB)及(或)过氧化氢基质液作用,以及硝酸酮处理的氢过氧化酶染色,能催化DAB氧化生成蓝色沉淀,定位于胞质中。(二) 操作步骤1 试剂配制(1) 1.25%戊二醛固定液:0.1mol/L磷酸盐缓冲液(PH7.3)9
近日,《新植物学家》(New Phytologist)发表了中国农业科学院植物保护研究所植物病害生物防治研究创新团队最新研究成果。该成果揭示了植物病原细菌丁香假单胞菌(Pst DC3000)通过激活植物茉莉酸信号来抑制水杨酸信号,从而抵御植物免疫、促进病原菌侵染的分子机制,这为进一步理解植物与病原菌
相关知识
抗病小体 揭示植物免疫秘密
抗病小体 揭示植物免疫秘密
抗病小体 揭示植物免疫秘密
中国科学家重大研究成果:抗病小体揭示植物免疫秘密
抗病小体,探索植物免疫新途径
抗病小体:植物免疫机器
植物免疫研究重大突破!我国科学家发现植物抗病小体
植物免疫研究领域的重大突破:发现抗病小体
【Science】植物免疫研究领域的重大突破:发现抗病小体
我科学家首次发现植物抗病小体 植物将可用“免疫疗法”对抗病虫害
网址: 抗病小体揭示植物免疫秘密 https://m.huajiangbk.com/newsview446655.html
上一篇: 11第十一章植物的抗病性1课件. |
下一篇: 园艺花卉常见病虫害防治技术探讨( |