首页 > 分享 > Advances in plant phenology

Advances in plant phenology

[1]

竺可桢, 宛敏渭. 物候学. 北京: 科学出版社, 1973.

[2]

Hopp R J. Plant phenology observation networks//Lieth H, ed. Phenology and Seasonality Modeling. Heidelberg, Berlin: Springer, 1974: 25-43.

[3]

Duarte L, Teodoro A C, Monteiro A T, Cunha M, Gonçalves H. QPhenoMetrics:an open source software application to assess vegetation phenology metrics. Computers and Electronics in Agriculture, 2018, 148: 82-94. DOI:10.1016/j.compag.2018.03.007

[4]

宛敏渭, 刘秀珍. 中国物候观测方法. 北京: 科学出版社, 1979: 1979.

[5] [6]

Rosenzweig C, Casassa G, Karoly D J, Imeson A, Liu C Z, Menzel A, Rawlins S, Root T L, Seguin B, Tryjanowski P. Assessment of observed changes and responses in natural and managed systems//Parry M L, Canziani O F, Palutikof J P, van der Linden P J, Hanson C E, eds. Contribution of Working Group Ⅱ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2007: 79-131.

[7]

Scheifinger H, Templ B. Is citizen science the recipe for the survival of paper-based phenological networks in Europe?. BioScience, 2016, 66(7): 533-534. DOI:10.1093/biosci/biw069

[8]

Kang S, Running S W, Lim J H, Zhao M S, Park C R, Loehman R. A regional phenology model for detecting onset of greenness in temperate mixed forests, Korea:an application of MODIS leaf area index. Remote Sensing of Environment, 2003, 86(2): 232-242. DOI:10.1016/S0034-4257(03)00103-2

[9]

Yang X, Tang J W, Mustard J F, Lee J E, Rossini M, Joiner J, Munger J W, Kornfeld A, Richardson A D. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophysical Research Letters, 2015, 42(8): 2977-2987. DOI:10.1002/2015GL063201

[10]

Smith W K, Biederman J A, Scott R L, Moore D J P, He M, Kimball J S, Yan D, Hudson A, Barnes M L, MacBean N, Fox A M, Litvak M E. Chlorophyll fluorescence better captures seasonal and interannual gross primary productivity dynamics across dryland ecosystems of southwestern North America. Geophysical Research Letters, 2018, 45(2): 748-757. DOI:10.1002/2017GL075922

[11]

Richardson A D, Jenkins J P, Braswell B H, Hollinger D Y, Ollinger S V, Smith M L. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia, 2007, 152(2): 323-334. DOI:10.1007/s00442-006-0657-z

[12]

Richardson A D, Klosterman S, Toomey M. Near-surface sensor-derived phenology//Schwartz M D, ed. Phenology: An Integrative Environmental Science. Dordrecht, Netherlands: Springer, 2013: 413-430.

[13]

Klosterman S, Melaas E, Wang J A, Martinez A, Frederick S, O'Keefe J, Orwig D A, Wang Z S, Sun Q S, Schaaf C, Friedl M, Richardson A D. Fine-scale perspectives on landscape phenology from Unmanned Aerial Vehicle (UAV) photography. Agricultural and Forest Meteorology, 2018, 248: 397-407. DOI:10.1016/j.agrformet.2017.10.015

[14]

Valdés A, Marteinsdóttir B, Ehrlén J. A natural heating experiment:phenotypic and genotypic responses of plant phenology to geothermal soil warming. Global Change Biology, 2019, 25(3): 954-962.

[15]

Primack R B, Miller-Rushing A J. The role of botanical gardens in climate change research. New Phytologist, 2009, 182(2): 303-313. DOI:10.1111/j.1469-8137.2009.02800.x

[16]

De Frenne P, Van Langenhove L, Van Driessche A, Bertrand C, Verheyen K, Vangansbeke P. Using archived television video footage to quantify phenology responses to climate change. Methods in Ecology and Evolution, 2018, 9(8): 1874-1882. DOI:10.1111/2041-210X.13024

[17]

Yalcin H. Plant phenology recognition using deep learning: deep-Pheno//Proceedings of the 2017 6th International Conference on Agro-Geoinformatics. Fairfax: IEEE, 2017: 1-5.

[18]

Koide D, Ide R, Oguma H. Detection of autumn leaf phenology and color brightness from repeat photography:accurate, robust, and sensitive indexes and modeling under unstable field observations. Ecological Indicators, 2019, 106: 105482. DOI:10.1016/j.ecolind.2019.105482

[19]

Deng L J, Lin Y, Yan L, Tesfamichael S, Billen R, Yao Y J, Yao W, Chen X W, Feng X, Wang C, Jing X. Urban plant phenology monitoring:expanding the functions of widespread surveillance cameras to nature rhythm understanding. Remote Sensing Applications:Society and Environment, 2019, 15: 100232. DOI:10.1016/j.rsase.2019.05.001

[20]

Aono Y, Kazui K. Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. International Journal of Climatology, 2008, 28(7): 905-914. DOI:10.1002/joc.1594

[21]

Ge Q S, Wang H J, Zheng J Y, This R, Dai J H. A 170 year spring phenology index of plants in eastern China. Journal of Geophysical Research:Biogeosciences, 2014, 119(3): 301-311. DOI:10.1002/2013JG002565

[22]

Lang P L M, Willems F M, Scheepens J F, Burbano H A, Bossdorf O. Using herbaria to study global environmental change. New Phytologist, 2019, 221(1): 110-122. DOI:10.1111/nph.15401

[23]

Brenskelle L, Stucky B J, Deck J, Walls R, Guralnick R P. Integrating herbarium specimen observations into global phenology data systems. Applications in Plant Science, 2019, 7(3): e01231. DOI:10.1002/aps3.1231

[24] [25]

Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 2003, 421(6918): 37-42. DOI:10.1038/nature01286

[26]

Menzel A, Sparks T H, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski F M, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, Van Vliet A J H, Wielgolaski F E, Zach S, Zust A. European phenological response to climate change matches the warming pattern. Global Change Biology, 2006, 12(10): 1969-1976. DOI:10.1111/j.1365-2486.2006.01193.x

[27]

Wang H J, Ge Q S, Dai J H, Tao Z X. Geographical pattern in first bloom variability and its relation to temperature sensitivity in the USA and China. International Journal of Biometeorology, 2015, 59(8): 961-969. DOI:10.1007/s00484-014-0909-2

[28]

Menzel A, von Vopelius J, Estrella N, Schleip C, Dose V. Farmers' annual activities are not tracking the speed of climate change. Climate Research, 2006, 32(3): 201-207.

[29]

Iler A M, Høye T T, Inouye D W, Schmidt N M. Long-term trends mask variation in the direction and magnitude of short-term phenological shifts. American Journal of Botany, 2013, 100(7): 1398-1406. DOI:10.3732/ajb.1200490

[30] [31]

Jeong S J, Medvigy D. Macroscale prediction of autumn leaf coloration throughout the continental United States. Global Ecology and Biogeography, 2014, 23(11): 1245-1254. DOI:10.1111/geb.12206

[32]

Panchen Z A, Primack R B, Nordt B, Ellwood E R, Stevens A D, Renner S S, Willis C G, Fahey R, Whittemore A, Du Y J, Davis C C. Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy. New Phytologist, 2014, 203(4): 1208-1219. DOI:10.1111/nph.12892

[33]

Zhu W Q, Tian H Q, Xu X F, Pan Y Z, Chen G S, Lin W P. Extension of the growing season due to delayed autumn over mid and high latitudes in North America during 1982-2006. Global Ecology and Biogeography, 2012, 21(2): 260-271. DOI:10.1111/j.1466-8238.2011.00675.x

[34]

Yu L X, Liu T X, Bu K, Yan F Q, Yang J C, Chang L P, Zhang S W. Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015. Scientific Reports, 2017, 7: 14770. DOI:10.1038/s41598-017-14918-4

[35]

Fu Y H, Piao S L, de Beeck M O, Cong N, Zhao H F, Zhang Y, Menzel A, Janssens I A. Recent spring phenology shifts in western Central Europe based on multiscale observations. Global Ecology and Biogeography, 2014, 23(11): 1255-1263. DOI:10.1111/geb.12210

[36]

Liu Y Z, Miao R H, Chen A Q, Miao Y, Liu Y J, Wu X W. Effects of nitrogen addition and mowing on reproductive phenology of three early-flowering forb species in a Tibetan alpine meadow. Ecological Engineering, 2017, 99: 119-125. DOI:10.1016/j.ecoleng.2016.11.033

[37]

Jochner S, Höfler J, Beck I, Göttlein A, Ankerst D P, Traidl-Hoffmann C, Menzel A. Nutrient status:a missing factor in phenological and pollen research?. Journal of Experimental Botany, 2013, 64(7): 2081-2092. DOI:10.1093/jxb/ert061

[38]

Chen L, Huang J G, Ma Q, Hänninen H, Tremblay F, Bergeron Y. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Global Change Biology, 2019, 25(3): 997-1004. DOI:10.1111/gcb.14496

[39]

Wolkovich E M, Cook B I, Davies T J. Progress towards an interdisciplinary science of plant phenology:building predictions across space, time and species diversity. New Phytologist, 2014, 201(4): 1156-1162. DOI:10.1111/nph.12599

[40]

Fu Y H, Liu Y J, De Boeck H J, Menzel A, Nijs I, Peaucelle M, Peñuelas J, Piao S L, Janssens I A. Three times greater weight of daytime than of night-time temperature on leaf unfolding phenology in temperate trees. New Phytologist, 2016, 212(3): 590-597. DOI:10.1111/nph.14073

[41]

Zohner C M, Renner S S. Perception of photoperiod in individual buds of mature trees regulates leaf-out. New Phytologist, 2015, 208(4): 1023-1030. DOI:10.1111/nph.13510

[42]

Mulder C P H, Iles D T, Rockwell R F. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community. Global Change Biology, 2017, 23(2): 801-814. DOI:10.1111/gcb.13386

[43] [44]

Chapman C A, Valenta K, Bonnell T R, Brown K A, Chapman L J. Solar radiation and ENSO predict fruiting phenology patterns in a 15-year record from Kibale National Park, Uganda. Biotropica, 2018, 50(3): 384-395. DOI:10.1111/btp.12559

[45]

Richardson A D, Keenan T F, Migliavacca M, Ryu Y, Sonnentag O, Toomey M. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology, 2013, 169: 156-173. DOI:10.1016/j.agrformet.2012.09.012

[46]

Dai W J, Jin H Y, Zhang Y H, Liu T, Zhou Z Q. Detecting temporal changes in the temperature sensitivity of spring phenology with global warming:application of machine learning in phenological model. Agricultural and Forest Meteorology, 2019, 279: 107702. DOI:10.1016/j.agrformet.2019.107702

[47]

Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice I C. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 2005, 19(1): GB1015.

[48]

Chuine I. Why does phenology drive species distribution?. Philosophical Transactions of the Royal Society B:Biological Sciences, 2010, 365(1555): 3149-3160. DOI:10.1098/rstb.2010.0142

[49]

Cannell M G R, Smith R I. Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology, 1983, 20(3): 951-963. DOI:10.2307/2403139

[50]

Murray M B, Cannell M G R, Smith R I. Date of budburst of fifteen tree species in Britain following climatic warming. Journal of Applied Ecology, 1989, 26(2): 693-700. DOI:10.2307/2404093

[51]

Sarvas R. Investigations on the annual cycle of development of forest trees. Ⅱ. Autumn dormancy and winter dormancy. Communicationes Instituti Forestalis Fenniae, 1974, 84: 1-101.

[52]

Landsberg J J. Apple fruit bud development and growth; analysis and an empirical model. Annals of Botany, 1974, 38(5): 1013-1023. DOI:10.1093/oxfordjournals.aob.a084891

[53]

Chuine I. A unified model for budburst of trees. Journal of Theoretical Biology, 2000, 207(3): 337-347. DOI:10.1006/jtbi.2000.2178

[54] [55] [56]

Kobayashi K D, Fuchigami L H. Modeling bud development during the quiescent phase in red-osier dogwood (Cornus sericea L.). Agricultural Meteorology, 1983, 28(1): 75-84. DOI:10.1016/0002-1571(83)90024-9

[57]

Kramer K. Selecting a model to predict the onset of growth of Fagus sylvatica. Journal of Applied Ecology, 1994, 31(1): 172-181. DOI:10.2307/2404609

[58] [59]

Zhang L X, Lei H M, Shen H, Cong Z T, Yang D W, Liu T X. Evaluating the representation of vegetation phenology in the community land model 4.5 in a temperate grassland. Journal of Geophysical Research:Biogeosciences, 2019, 124(2): 187-210. DOI:10.1029/2018JG004866

[60]

Caffarra A, Donnelly A, Chuine I. Modelling the timing of Betula pubescens budburst. Ⅱ. Integrating complex effects of photoperiod into process-based models. Climate Research, 2011, 46(2): 159-170. DOI:10.3354/cr00983

[61]

Schaber J, Badeck F W. Physiology-based phenology models for forest tree species in Germany. International Journal of Biometeorology, 2003, 47(4): 193-201. DOI:10.1007/s00484-003-0171-5

[62]

Blümel K, Chmielewski F M. Shortcomings of classical phenological forcing models and a way to overcome them. Agricultural and Forest Meteorology, 2012, 164: 10-19. DOI:10.1016/j.agrformet.2012.05.001

[63]

Li R P, Zhou G S. A temperature-precipitation based leafing model and its application in Northeast China. PLoS One, 2012, 7(4): e33192. DOI:10.1371/journal.pone.0033192

[64]

Soltani A, Hammer G L, Torabi B, Robertson M J, Zeinali E. Modeling chickpea growth and development:phenological development. Field Crops Research, 2006, 99(1): 1-13. DOI:10.1016/j.fcr.2006.02.004

[65]

Delpierre N, Dufrêne E, Soudani K, Ulrich E, Cecchini S, Boé J, François C. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology, 2009, 149(6/7): 938-948.

[66]

Lang W G, Chen X Q, Qian S W, Liu G H, Piao S L. A new process-based model for predicting autumn phenology:how is leaf senescence controlled by photoperiod and temperature coupling?. Agricultural and Forest Meteorology, 2019, 268: 124-135. DOI:10.1016/j.agrformet.2019.01.006

[67]

Wang H J, Ge Q S, Rutishauser T, Dai Y X, Dai J H. Parameterization of temperature sensitivity of spring phenology and its application in explaining diverse phenological responses to temperature change. Scientific Reports, 2015, 5: 8833. DOI:10.1038/srep08833

[68]

Kikuzawa K. Leaf phenology as an optimal strategy for carbon gain in plants. Canadian Journal of Botany, 1995, 73(2): 158-163. DOI:10.1139/b95-019

[69]

White M A, Thornton P E, Running S W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 1997, 11(2): 217-234. DOI:10.1029/97GB00330

[70]

Jolly W M, Nemani R, Running S W. A generalized, bioclimatic index to predict foliar phenology in response to climate. Global Change Biology, 2005, 11(4): 619-632. DOI:10.1111/j.1365-2486.2005.00930.x

[71]

White M A, Nemani R R, Thornton P E, Running S W. Satellite evidence of phenological differences between urbanized and rural areas of the eastern United States deciduous broadleaf forest. Ecosystems, 2002, 5(3): 260-273. DOI:10.1007/s10021-001-0070-8

[72]

Fisher J I, Richardson A D, Mustard J F. Phenology model from surface meteorology does not capture satellite-based greenup estimations. Global Change Biology, 2007, 13(3): 707-721. DOI:10.1111/j.1365-2486.2006.01311.x

[73] [74] [75]

Choler P, Sea W, Briggs P, Raupach M, Leuning R. A simple ecohydrological model captures essentials of seasonal leaf dynamics in semi-arid tropical grasslands. Biogeosciences, 2010, 7(3): 907-920. DOI:10.5194/bg-7-907-2010

[76]

Fu Y S H, Campioli M, Vitasse Y, De Boeck H J, Van den Berge J, AbdElgawad H, Asard H, Piao S L, Deckmyn G, Janssens I A. Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): 7355-7360. DOI:10.1073/pnas.1321727111

[77]

Schwartz M D. Phenology:An Integrative Environmental Science. Dordrecht: Springer, 2013.

[78]

Zhao M F, Peng C H, Xiang W H, Deng X W, Tian D L, Zhou X L, Yu G R, He H L, Zhao Z H. Plant phenological modeling and its application in global climate change research:overview and future challenges. Environmental Reviews, 2013, 21(1): 1-14. DOI:10.1139/er-2012-0036

[79]

Güsewell S, Furrer R, Gehrig R, Pietragalla B. Changes in temperature sensitivity of spring phenology with recent climate warming in Switzerland are related to shifts of the preseason. Global Change Biology, 2017, 23(12): 5189-5202. DOI:10.1111/gcb.13781

[80]

Prevéy J, Vellend M, Rüger N, Hollister R D, Bjorkman A D, Myers-Smith I H, Elmendorf S C, Clark K, Cooper E J, Elberling B, Fosaa A M, Henry G H R, Høye T T, Jónsdóttir I S, Klanderud K, Lévesque E, Mauritz M, Molau U, Natali S M, Oberbauer S F, Panchen Z A, Post E, Rumpf S B, Schmidt N M, Schuur E A G, Semenchuk P R, Troxler T, Welker J M, Rixen C. Greater temperature sensitivity of plant phenology at colder sites:implications for convergence across northern latitudes. Global Change Biology, 2017, 23(7): 2660-2671. DOI:10.1111/gcb.13619

[81]

Fu Y H, Zhao H F, Piao S L, Peaucelle M, Peng S S, Zhou G Y, Ciais P, Huang M T, Menzel A, Peñuelas J, Song Y, Vitasse Y, Zeng Z Z, Janssens I A. Declining global warming effects on the phenology of spring leaf unfolding. Nature, 2015, 526(7571): 104-107. DOI:10.1038/nature15402

[82] [83]

Fu Y H, Piao S L, Ciais P, Huang M T, Menzel A, Peaucelle M, Peng S S, Song Y, Vitasse Y, Zeng Z Z, Zhao H F, Zhou G Y, Peñuelas J, Janssens I A. Long-term linear trends mask phenological shifts. International Journal of Biometeorology, 2016, 60(11): 1611-1613. DOI:10.1007/s00484-016-1253-5

[84]

Chmielewski F M. Phenology in agriculture and horticulture//Schwartz M D, ed. Phenology: An Integrative Environmental Science. Dordrecht: Springer, 2013: 539-561.

[85]

Chu K C. A preliminary study on the climatic fluctuations during the last 5000 years in China. Scientia Sinica, 1973, 16(2): 226-256.

[86]

Richardson A D, Anderson R S, Arain M A, Barr A G, Bohrer G, Chen G S, Chen J M, Ciais P, Davis K J, Desai A R, Dietze M C, Dragoni D, Garrity S R, Gough C M, Grant R, Hollinger D Y, Margolis H A, McCaughey H, Migliavacca M, Monson R K, Munger J W, Poulter B, Raczka B M, Ricciuto D M, Sahoo A K, Schaefer K, Tian H Q, Vargas R, Verbeeck H, Xiao J F, Xue Y K. Terrestrial biosphere models need better representation of vegetation phenology:results from the North American Carbon Program Site Synthesis. Global Change Biology, 2012, 18(2): 566-584. DOI:10.1111/j.1365-2486.2011.02562.x

[87]

Wolkovich E M, Cook B I, Allen J M, Crimmins T M, Betancourt J L, Travers S E, Pau S, Regetz J, Davies T J, Kraft N J B, Ault T R, Bolmgren K, Mazer S J, McCabe G J, McGill B J, Parmesan C, Salamin N, Schwartz M D, Cleland E E. Warming experiments underpredict plant phenological responses to climate change. Nature, 2012, 485(7399): 494-497. DOI:10.1038/nature11014

[88]

Piao S L, Liu Z, Wang T, Peng S S, Ciais P, Huang M T, Ahlstrom A, Burkhart J F, Chevallier F, Janssens I A, Jeong S J, Lin X, Mao J F, Miller J, Mohammat A, Myneni R B, Peñuelas J, Shi X Y, Stohl A, Yao Y T, Zhu Z C, Tans P P. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, 2017, 7(5): 359-363. DOI:10.1038/nclimate3277

[89]

Keenan T F, Gray J, Friedl M A, Toomey M, Bohrer G, Hollinger D Y, Munger J W, O'Keefe J, Schmid H P, Wing I S, Yang B, Richardson A D. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nature Climate Change, 2014, 4(7): 598-604. DOI:10.1038/nclimate2253

[90]

Saikkonen K, Taulavuori K, Hyvönen T, Gundel P E, Hamilton C E, Vänninen I, Nissinen A, Helander M. Climate change-driven species' range shifts filtered by photoperiodism. Nature Climate Change, 2012, 2(4): 239-242.

[91]

Schwartz M D. Phenology//Liu W D, Marston R A, eds. The International Encyclopedia of Geography: People, the Earth, Environment and Technology. Hoboken: John Wiley & Sons, Ltd., 2017: 1-7.

[92]

Zohner C M, Rockinger A, Renner S S. Increased autumn productivity permits temperate trees to compensate for spring frost damage. New Phytologist, 2019, 221(2): 789-795. DOI:10.1111/nph.15445

[93]

Fitter A H, Fitter R S R. Rapid changes in flowering time in British plants. Science, 2002, 296(5573): 1689-1691. DOI:10.1126/science.1071617

[94] [95]

Ge Q S, Dai J H, Liu J, Zhong S Y, Liu H L. The effect of climate change on the fall foliage vacation in China. Tourism Management, 2013, 38: 80-84. DOI:10.1016/j.tourman.2013.02.020

[96]

Lee M A, Monteiro A, Barclay A, Marcar J, Miteva-Neagu M, Parker J. A framework for predicting soft-fruit yields and phenology using embedded, networked microsensors, coupled weather models and machine-learning techniques. Computers and Electronics in Agriculture, 2020, 168: 105103. DOI:10.1016/j.compag.2019.105103

[97]

Gazal R, White M A, Gillies R, Rodemaker E, Sparrow E, Gordon L. GLOBE students, teachers, and scientists demonstrate variable differences between urban and rural leaf phenology. Global Change Biology, 2008, 14(7): 1568-1580. DOI:10.1111/j.1365-2486.2008.01602.x

[98]

Laskin D N, McDermid G J, Nielsen S E, Marshall S J, Roberts D R, Montaghi A. Advances in phenology are conserved across scale in present and future climates. Nature Climate Change, 2019, 9(5): 419-425. DOI:10.1038/s41558-019-0454-4

[99]

Puchałka R, Koprowski M, Gričar J, Przybylak R. Does tree-ring formation follow leaf phenology in Pedunculate oak (Quercus robur L.)?. European Journal of Forest Research, 2017, 136(2): 259-268. DOI:10.1007/s10342-017-1026-7

[100]

Capinha C. Predicting the timing of ecological phenomena using dates of species occurrence records:a methodological approach and test case with mushrooms. International Journal of Biometeorology, 2019, 63(8): 1015-1024. DOI:10.1007/s00484-019-01714-0

[101]

Nagahama A, Kubota Y, Satake A. Climate warming shortens flowering duration:a comprehensive assessment of plant phenological responses based on gene expression analyses and mathematical modeling. Ecological Research, 2018, 33(5): 1059-1068. DOI:10.1007/s11284-018-1625-x

[102]

Piao S L, Liu Q, Chen A P, Janssens I A, Fu Y S, Dai J H, Liu L L, Lian X, Shen M G, Zhu X L. Plant phenology and global climate change:current progresses and challenges. Global Change Biology, 2019, 25(6): 1922-1940. DOI:10.1111/gcb.14619

[103]

Kudoh H. Molecular phenology in plants:in natura systems biology for the comprehensive understanding of seasonal responses under natural environments. New Phytologist, 2016, 210(2): 399-412. DOI:10.1111/nph.13733

[104]

Yang B, He M H, Shishov V, Tychkov I, Vaganov E, Rossi S, Ljungqvist F C, Bräuning A, Grießinger J. New perspective on spring vegetation phenology and global climate change based on Tibetan Plateau tree-ring data. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6966-6971. DOI:10.1073/pnas.1616608114

[105]

Zettlemoyer M A, Schultheis E H, Lau J A. Phenology in a warming world:differences between native and non-native plant species. Ecology Letters, 2019, 22(8): 1253-1263.

相关知识

Using controlled experiments to investigate plant phenology in response to climate change: progress and prospects
Recent Advances in Synthetic Chemical Inducers of Plant Immunity.,Frontiers in Plant Science
戴君虎
植物内生菌的生物防治作用研究进展 Advances in Biocontrol of Plant Endophytes
贵阳木本植物始花期对温度变化的敏感度
Spatial and temporal changes of vegetation phenology and its response to urbanization in the Beijing
1963
Relationship between flowering phenology and phylogeny in 31 woody plants of Urumqi, Xinjiang
Advances in humic acid for promoting plant growth and its mechanism
植被物候对极端气候响应及机制

网址: Advances in plant phenology https://m.huajiangbk.com/newsview467940.html

所属分类:花卉
上一篇: 纪念竺可桢先生诞辰120周年
下一篇: 高山原生植物花寿命和性期持续时间