【摘要】: 近年来,植物信息学逐步重视对基于图像的植物识别技术的研究。植物的分类与识别一般依赖植物的形态、纹理、颜色等特征进行识别,即根据花、果实、叶等器官的形态特征完成分类识别工作。植物叶片纹理、颜色和形态结构各异,是区别植物物种的主要依据。而且植物叶片图像采集方便,存活时间较长,四季变化分明,通过叶片对植物进行分类研究成为目前许多学者的研究热点。基于卷积神经网络的深度学习算法,可以自主学习叶片特征减少人工干预,对于复杂背景叶片图像能排除噪声干扰等,提高图像识别效率。本文基于卷积神经网络算法构建了一个8层的深度学习叶片识别系统,并且利用Pl@antNet叶片库及自主扩展的植物叶片数据来训练样本数据,完成识别率测试。为了提高识别率,对单一背景和复杂背景的叶片图像分别给出了图像预处理方案;并将基于深度学习的识别系统跟SIFT算子和叶片图像特征的多分类器识别系统进行了对比分析,验证了算法的有效性。实验证明本文提供的CNN+SVM和CNN+Softmax分类器识别方法对单一背景叶片图像识别率能够高达91.11%和90.90%,识别复杂背景叶片图像识别率也能高达34.38%,取得了较好的识别效果。本文实现的8层深度学习叶片识别系统依然有改进空间,各层参数等均采取的默认值,权值参数调优过程依然值得改进。同时,图像分割处理部分依然可以作为未来研究的重点之一。复杂叶片图像背景下识别率不到40%,改进空间依然很大,同时对于叶形过于相似的植物分类识别将是植物分类中面临的挑战问题。
【学位授予单位】:北京林业大学
【学位级别】:硕士
【学位授予年份】:2016
相关知识
Yolo v5深度学习用于植物叶片病害识别【matlab】
基于深度学习/YOLOv8的植物叶片病害识别系统【附源码+可远程安装部署】
基于深度学习的花卉图像分类识别模型研究
深度学习在植物种类及病害识别领域的研究
毕业设计:基于深度学习的野生花卉识别分类算法系统 目标检测
基于深度学习的植物病虫害识别方法与流程
深度学习下的小样本玉米叶片病害识别研究
基于深度学习技术的农作物病虫害检测识别系统的研究
基于深度学习的yolov7植物病虫害识别及防治系统
基于深度学习和迁移学习的识花实践
网址: 基于深度学习的植物叶片识别算法研究 https://m.huajiangbk.com/newsview480624.html
上一篇: 花卉的叶斑病 |
下一篇: [选读]红掌细菌性叶斑病的症状及 |