from sklearn.datasets import load_iris
iris=load_iris()
data=iris.data
target=iris.target
target_names=iris.target_names
feature_names=iris.feature_names
from pandas import Series,DataFrame
features=DataFrame(data=data,columns=feature_names)
features.head()
features.iloc[:,0].std()
features.iloc[:,1].std()
features.iloc[:,2].std()
features.iloc[:,3].std()
X_train=features.iloc[0:130,2:4]
y_train=target[:130]
x_test=features.iloc[130:,2:4]
y_test=target[130:]
display(X_train.shape,y_train.shape,x_test.shape,y_test.shape)
import matplotlib.pyplot as plt
%matplotlib inline
samples=features.iloc[:,2:4]
plt.scatter(samples.iloc[:,0],samples.iloc[:,1],c=target)
knnclf.fit(X_train,y_train)
knnclf.score(x_test[:20],y_test[:20])
y_=knnclf.predict(x_test)
y_test
y_
上述代码对比展示预测分类与真实分类并计算精确度
from matplotlib.colors import ListedColormap
cmap=ListedColormap(['#FF0000','#00FF00','#0000FF'])
xmin,xmax=samples.iloc[:,0].min(),samples.iloc[:,0].max()
ymin,ymax=samples.iloc[:,1].min(),samples.iloc[:,1].max()
display(xmin,xmax,ymin,ymax)
x=np.linspace(xmin,xmax,100)
y=np.linspace(ymin,ymax,100)
display(x,y)
xx,yy=np.meshgrid(x,y)
display(xx,yy)
x_test=np.c_[xx.ravel(),yy.ravel()]
display(x_test,x_test.shape)
y_=knnclf.predict(x_test)
y_test
plt.scatter(x_test[:,0],x_test[:,1],c=y_,cmap=cmap)
plt.scatter(samples.iloc[:,0],samples.iloc[:,1],c=target)
相关知识
【机器学习】KNN算法实现鸢尾花分类
Knn算法实现鸢尾花分类
KNN算法实现鸢尾花数据集分类
原生python实现knn分类算法(鸢尾花数据集)
Python原生代码实现KNN算法(鸢尾花数据集)
用python实现KNN算法对鸢尾花的分类
【python机器学习】KNN算法实现回归(基于鸢尾花数据集)
KNN算法分类算法
对鸢尾花进行分类预测
实验一:鸢尾花数据集分类
网址: KNN算法鸢尾花分类 https://m.huajiangbk.com/newsview501855.html
上一篇: 用c语言程序实现对水仙花数的判断 |
下一篇: C语言输出1000以内的水仙花数 |