1.使用函数模型API,新建一个model,将输入和输出定义为原来的model的输入和想要的那一层的输出,然后重新进行predict.
import seaborn as sbn
import pylab as plt
import theano
from keras.models import Sequential
from keras.layers import Dense,Activation
from keras.models import Model
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(16, activation='relu',name="Dense_1"))
model.add(Dense(1, activation='sigmoid',name="Dense_2"))
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
import numpy as np
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1))
model.fit(data, labels, epochs=10, batch_size=32)
dense1_layer_model = Model(inputs=model.input,
outputs=model.get_layer('Dense_1').output)
dense1_output = dense1_layer_model.predict(data)
print dense1_output.shape
print dense1_output[0]
2.因为我的后端是使用的theano,所以还可以考虑使用theano的函数:
dense1 = theano.function([model.layers[0].input],model.layers[1].output,allow_input_downcast=True)
dense1_output = dense1(data)
print dense1_output[0]