棉花是我国重要的大田经济作物,在国民经济中占有举足轻重的地位,也是病虫害发生最为严重的大田作物之一。病虫害一直是制约棉花高产、稳产的关键因子,每年可造成棉花产量损失15%~20%,严重时高达30%~50%[1]。长期以来棉花病虫害的防控主要依赖于化学农药,虽然能够取得可靠的防治效果,但长期使用容易导致棉田害虫抗药性提高,天敌种群数量下降,自然控害能力减弱,棉田生态环境污染[2]。近十几年来,随着人们生态环保意识的增强,生态防治日益得到重视和深入研究[3]。其中,利用作物间(套)作增加多样性是生态防病治虫的一条重要途径[4]。根据作物与病虫害的关系和防治目的等,将不同作物科学搭配,实行间作、套种或混种,例如:把毒杀、驱除害虫、诱集天敌或者具有抑菌作用的作物种植在经营作物的行间,一方面可达到减轻病虫危害、减少农药使用的效果[5,6,7,8];另一方面可以在充分利用自然条件和资源的基础上,增加田间多样性,使作物产量高且更稳定,实现较高经济效益[9,10,11,12]。就棉花而言,与其他作物间作套种通常可以增加间作体系的产量和经济效益,而不影响棉花品质[13,14];同时,间作植物可以驱除棉田害虫、吸引天敌或为天敌提供避难所,减少棉田害虫种群[15,16,17,18]。因此,棉田间作套种既是解决棉花与粮食和其它经济作物争地矛盾的好办法,也是改变棉田天敌群落结构,控制病虫害发生的重要途径[3,19-22]。然而,利用棉田间作套种防控病虫害也存在一定的风险,例如:与棉花间作的冬枣可以为棉花害虫绿盲蝽提供适宜的越冬场所,增加棉田越冬害虫基数;棉花红腐病菌不仅危害棉花,还危害水稻、麦类、玉米、高粱、甘蔗、甜菜等作物,棉花与这些作物间作可能会加重棉花红腐病的发生。本文结合当前已发表的研究成果,就作物间(套)作对棉田病虫害的控制效应及其风险控制作一总结性评述,对应用间作套种治理棉花病虫害的应用前景、亟需解决的问题进行展望和论述,以期为有效利用间(套)作进行棉田病虫害生态防控提供支持。
棉田间作模式多种多样,在中国主要有棉粮间作(棉花与玉米、大豆等间作)、棉油间作(棉花与花生、芝麻等间作)、棉瓜间作(棉花与西瓜、甜瓜等间作)、棉菜间作(棉花与西红柿、白菜等间作)和棉果间作(棉花与冬枣等间作)等模式。另外,棉花与小麦、油菜、大蒜和马铃薯等冬季作物套种也是重要的棉田复种方式[23,24,25,26]。棉花病害主要有炭疽病、猝倒病、枯萎病、黄萎病、红叶茎枯病和铃病等,其中以枯萎病、黄萎病发生最为严重;棉铃虫、蚜虫、棉叶螨和棉盲蝽均为棉花的主要害虫[1,27]。合理的棉田间(套)作模式通常会对病虫害起到防控作用(
表1)。对棉田害虫发生不利的间(套)作模式,能够干扰害虫赖以寻找寄主的视觉或嗅觉刺激从而影响害虫对寄主植物的定向,可以保育棉田天敌,增加益害比,或起到诱集、驱避棉田害虫的作用;同时,高大的非寄主植物可作为隐藏寄主植物的屏障来增加病虫定殖的难度,也可减少病虫为害[28,29,30]。总结现有研究,间(套)作对棉花病虫害的影响通常表现在4个方面,参见
图1。
表1 棉花和不同作物间(套)作对棉田病虫害发生程度和天敌数量产生的影响Table 1 The occurrence of cotton pests and diseases as well as the number of natural enemies as affected by intercropping of cotton with different crops
间(套)作作物Fig. 1 Model charts of intercropping in mediating the occurrence of diseases and pests in cotton fields
①, ②, ③, ④ and ⑤ show different mechanisms of intercropping in preventing and controlling the cotton pests and diseases in fields.Full size|PPT slide
1.1 吸引天敌或为天敌提供栖息场所,保育棉田天敌
棉花与小麦、玉米、绿豆、向日葵、苜蓿、油菜、高粱等作物间作可起到吸引天敌或为天敌繁育提供场所的作用,利于增加棉田天敌数量,控制和减轻棉田害虫为害。农田节肢动物群落结构与作物时空布局密切相关[49,50,51]。间作棉田植被多样性增加,改变了棉田作物的时空布局,通常能增加棉田节肢动物群落的稳定性,提高天敌节肢动物的种群数量,降低或抑制害虫的种群密度[20,31,52]。棉田周围种植玉米、绿豆和向日葵3种诱集作物,对棉田草蛉、龟纹瓢虫和异色瓢虫均可起到显著的保护增殖作用[3]。棉花与小麦套作,麦田能为天敌提供越冬场所和食源,有利于天敌的繁衍[31,32],可为棉田提供种类多、数量大的天敌群体,尤其是瓢虫类天敌的有效库源[33,53-56]。间作苜蓿的棉田,天敌生态位宽度和主要天敌如蜘蛛类、多异瓢虫与害虫生态位重叠度大于单作棉田,且棉田间作苜蓿能有效吸引棉蚜的捕食者[18],苜蓿也可以为天敌繁衍提供必要的场所,使天敌物种数及个体数增加,较早地迁入并定居于棉田,使得与苜蓿间作的棉田棉蚜的发生期缩短、发生量减少、危害程度减轻,有效地控制害虫为害[38-40,52,57]。棉花与油菜套作,利用油菜生长快、枝叶繁茂、菜蚜发生早等特点,不仅可以招引瓢虫、蚜茧蜂等天敌,使捕食性天敌明显增多,同时还能为这些天敌提供替代猎物、补充营养和过渡场所,有效保育早期棉田天敌、减轻苗蚜的发生为害[2,35]。据山东聊城、河北邯郸、邢台、河南安阳等地的生产实践,棉田套种油菜养瓢治蚜,可使天敌增加15倍或更多,有效起到控制苗蚜、推迟和减轻伏蚜发生的作用[6]。同样,利用绿豆发棵快的特点,棉花与绿豆间作可以在五六月份单作田棉株小、不利于天敌隐蔽、栖息的时期,改善棉田小气候而利于天敌的生存和繁衍,招引瓢虫,增加天敌数量[5,43]。棉花与高粱间作,除瓢虫、草蛉外,还可有效诱集蜘蛛、蚜茧蜂、食蚜蝇、小花蝽等天敌,抑制棉蚜、棉铃虫等害虫的发生为害[5]。
1.2 诱集或驱避棉田害虫,减少为害
除吸引天敌、改善棉田生态结构外,棉田间作玉米、苜蓿、绿豆、豇豆等害虫更喜食或选择的寄主植物还可显著诱集棉田害虫,减少害虫对棉花的为害。如:棉花与玉米间作,玉米可以诱集棉铃虫、玉米螟产卵,减少棉株上的害虫落卵量,从而减轻此类害虫对棉田的危害与玉米间作的棉花被害率仅为0.5%,显著低于单作棉花被害率(5%~9%)[5,6];苜蓿、绿豆、豇豆、饭豇豆与棉花间作均可有效诱集棉盲蝽,减轻棉盲蝽对棉花的为害,且在饭豇豆上中黑盲蝽若虫的存活率仅为20%[41,42]。而将棉花与有特殊气味的作物,如大蒜、胡萝卜、香草等间(套)作,可直接有效驱避棉田害虫、减轻为害。大蒜挥发的大蒜素具有辛辣气味,可显著驱避棉蚜为害,胡萝卜对蚜虫也具有忌避作用,在棉田间作大蒜或胡萝卜,棉蚜可减少11%~87%,减少棉花卷叶率30~35百分点,减少用药3~4次[6];间作大蒜还可明显减轻棉花上二代棉铃虫的发生[5];香草与棉花间作,对前期发生的有翅棉蚜具有直接驱避作用,可减少棉株上的蚜虫基数[45]。
1.3 改变田间小气候,降低害虫种群密度
通过间作而引起的棉田害虫发生情况发生改变的因素是多方面的。间作生态系统在受光结构、通风、湿度、温度方面与单作田相比存在明显变化[58,59]。部分间作作物(如矮秆作物、果树等)虽不会直接对棉田害虫或天敌产生吸引或驱避的作用,但它们会对棉田的温度、湿度、风速、光照等气候因素产生较大影响[26,60-61]。而气候因素(温度、湿度、风速、光照等)是影响昆虫种群数量变动主要外部条件之一[12,24],势必造成间作棉田害虫种群与单作棉田的差异:一方面,直接作用于棉花害虫的发育与存活而影响其种群密度;另一方面,通过影响天敌的种群密度、作物长势等,间接地影响害虫的发生。如,棉花与扁桃间作模式下与棉花单作种植模式下牧草盲蝽种群发生动态基本一致,种群数量和密度均无显著差异,而由于间作棉田小气候的改变,百株累计虫量及棉铃被害率在扁桃棉花间作模式下均显著降低[26]。路献勇等对棉花与糯玉米间作模式下蚜虫种群数量的时序动态系统调查结果表明,单作间作田蚜虫种群数量的时序变化趋势基本一致,但在蚜虫发生高峰期,间作田有翅蚜及无翅蚜数量均显著低于棉花、糯玉米单作[30]。温度和湿度也明显影响棉盲蝽的种群增长,其中旬平均温湿度是影响棉盲蝽种群增长的主要因素[62]。杏棉间作棉田较单作棉田的气温、地表温度和风速明显降低,空气相对湿度提高[63],使得杏棉间作棉田牧草盲蝽发生量显著降低,且不利于棉蓟马和棉长管蚜种群在棉田的发生[24,44]。
1.4 间(套)作有利于控制棉花病害
棉花与其他作物合理间作,可以在有效控制棉田虫害的同时,对棉花病害起到显著的预防控制作用。其一,合理间(套)作可控制病毒传毒媒介蚜虫、烟粉虱等害虫,在减少其对棉花直接取食为害的同时,又可以降低病毒病在棉田发生的风险;适当的宽幅间(套)作还可以在一定程度上起到阻隔气流传播病原菌在棉田传播为害的作用。其二,间作作物自身的代谢物质可抑制病害。如:大蒜的根系分泌物可以直接或间接对棉花病害的发生起到抑制作用[36],与大蒜间作棉田的棉花枯萎病和黄萎病较单作棉田均显著减轻[39];胡萝卜根系分泌物对棉苗立枯病菌与很强的抑制作用,与胡萝卜间作可有效减轻棉花立枯病的发病率[6];毛苕子、沙打旺等根系分泌物能有效地破坏病菌氧化酶系统,扰乱病菌代谢过程,对棉花根腐病菌可起到抑制作用[6]。其三,与禾谷类作物轮作或合理的间(套)作,可减少棉花土传病害的病原菌数量,降低病害发生与严重程度,实行小麦-棉花、甘蓝-棉花、西瓜-棉花、甜瓜-棉花间作套种,对预防棉花烂铃也有显著效果[34,64]。另外,土壤线虫是棉花枯萎病、黄萎病发生的重要诱因,而棉花与花生轮作可有效防治棉花南方根结线虫,减少下一季棉花根结数量;同时,棉花是许多主要侵染花生的根结线虫的非寄主植物,从控制根结线虫的角度出发,棉花与花生轮作对2种作物都有益[65]。
棉田合理间(套)作可以显著减少或控制病虫害的发生,但棉田间(套)作模式在防控病虫害方面的应用也存在一定的局限,不合理的间(套)作模式可能会增加病虫害发生的风险(
表1)。
2.1 时效有限,人工投入增加
可有效控制棉田害虫发生的一些间(套)作模式也存在诸多限制因素。其一,棉田天敌增益持效期短。如:麦棉套作模式下,麦田能为天敌提供越冬场所和食源,增加棉田天敌基数,但麦收后随着时间的延长,棉田增益作用减弱[54];华北棉区多样化套间作系统内,苗蚜和二代棉铃虫发生轻,但伏蚜和三代棉铃虫发生重,天敌和害虫群落的生产力均增加,但天敌控害效能较差[51]。其二,通过种植害虫诱集作物减少棉田害虫人工投入往往加大。如:通过种植玉米诱集玉米螟、棉铃虫等产卵进行防治时,需要大面积连片种植玉米,并及时在棉铃虫、玉米螟发蛾盛期每天早晨5―6时捉蛾采卵,或玉米螟危害盛期过后拔除玉米株并带出田外,才可达到有效防治的目的,否则会加重危害[6];与苜蓿间作可有效诱集棉盲蝽,但要经常收割苜蓿以保持其旺盛的长势,且需要大量喷施杀虫剂处理苜蓿上的棉盲蝽[42]。其三,传统间(套)作模式往往阻碍机械化的推行[66]。种、管、收全程机械化是作物生产的必然发展趋势,传统棉田间作套种不利于推行机械化,特别是增加了机械植保的难度。另外,对于间作诱集作物的品种、播种时间、种植方式也有较高要求。如棉田间作种植油菜诱集带,主要是利用油菜上的蚜虫等害虫吸引和繁殖自然天敌,这既要求油菜上的植食性昆虫不会为害棉花,发生数量尽可能大,又要求油菜与棉花的共生期尽可能短,以免影响棉花生长[2]。
2.2 为病虫害发生提供有利条件,有可能加重某些病虫为害
通过与其他作物间(套)作,调整作物布局,在增加物种多样性,改变棉田天敌群落结构的同时,可能加重棉田病虫为害。一方面,寄主植物资源质量的局部变化会严重影响整体的种群动态,一些作物可能对害虫起到保护作用[17,67],或者使田间通风透光条件变差,使田间小气候更利于病虫害的发生而导致其为害加重[60]。在新疆阿克苏地区,红枣与棉花间作时,棉花收获后,棉叶螨可在枣树落叶或树皮缝隙中越冬,间作的枣树给棉叶螨生存提供了有利条件,使得其越冬基数加大,发生危害日趋严重[46,60];在山东东营市,棉花与冬枣间作模式给绿盲蝽提供了良好的食物来源,导致其为害加重[47,48]。另一方面,棉花病害的病原可以寄生多种寄主植物,当棉花与这些寄主作物间(套)作时,会增加棉花病害发生的风险。如黄萎病病原菌的寄主植物除棉花外,还有芝麻、豌豆、马铃薯、甘薯、甜菜、辣椒等,在棉花与这些作物实行间(套)轮作时,可能会增加病原生物群体数量,加重病害发生[68]。
2.3 作物群体结构复杂,增加了病虫害防治难度
棉花间(套)作模式增加了田间作物物种多样性,使棉田作物群体结构更为复杂,不同间作作物的生长性状、抗药性能、适用药剂的种类等方面的差异,及其对害虫在田间分布的影响,均是间(套)作棉田病虫害防治应考虑的内容;不同作物病虫的种类、耐药性、防治方法和防治适期均存在差异,病虫害防治时须对二者分开进行施药,而且对害虫来讲,对其中一种作物施药时,另一种作物便成为其避难场所,大大增加了间(套)作棉田病虫害防治的难度[60]。如:对西瓜和棉花适用杀虫剂的限制不同,使得棉花与西瓜间作系统的管理程序更为复杂[69]。棉花与冬枣间作,会加重棉盲蝽为害,且冬枣与棉花防治病虫害对所施药剂的毒性要求不同,不利于植保技术实施;此外,化学除草剂使用不当易对枣树产生药害,或是因除草不彻底造成田间杂草发生多且重,加重棉叶螨等害虫的发生[60]。
随着对棉田生态环境的日益重视,基于棉田间作套种的棉花病虫害生态治理备受关注。合理的间作套种可以通过保育或吸引天敌增加天敌数量、诱集或驱避害虫、改变田间小气候影响天敌和害虫的生长发育,进而起到控制棉花虫害的作用;也可以通过作物根系分泌物抑制病原生长繁殖进而控制棉花病害发生发展。但是,一方面间作套种只是棉花病虫害综合防治的手段之一,具有一定的时效性,需要配合不同的管理措施,如当病虫害发生达到经济阈值时,仍应结合化学防治方法进行有效控制;另一方面,间作套种增加物种多样性的同时也增加了某些病虫害发生的风险,需要引起足够重视。为充分发挥棉田间(套)作对棉田病虫害控制作用的优势,规避其风险,针对我国棉花种植现状及棉花病虫害发生趋势,今后应加强以下几个方面的研究:
一是根据新形势优化棉田种植模式。在充分考虑植棉区生态条件的基础上,结合当前中国棉花种植正向规模化、机械化、智能化、信息化发展的趋势,明确新型种植模式对田间病虫害发生的影响,优化种植模式,筛选可以有效减少病虫害发生、适于机械化种植和管理的宽幅间作和轻简化种植模式,对轻简化植棉和农药减施具有重要指导意义。例如:蒜(麦)套种春棉改为蒜(麦)后直播早熟棉,一方面便于轻简化、机械化栽培管理,另一方面通过缩短棉花生长期,减少病虫危害棉花的机会;棉花花生宽幅等幅间作,由于幅宽加大,可以较好地解决难以实行机械化的问题,同时棉花因生态环境改善易于增产,若再实施棉花花生轮作,又可解决花生连作障碍问题。但是,这些新型种植模式会对棉田病虫害发生带来怎样的影响有待深入研究。
二是针对棉花病虫害发生现状,优化作物品种布局。棉花和间(套)作作物均是间(套)作棉田经济收益的来源,二者品种选择,既要看经济效益,还要看社会、生态效益。棉花病虫害种类多、危害重,防治对象复杂多样。利用作物抗性防治病虫害是最为经济、有效的手段,且可以减少化学农药的使用,对生态环境友好。因此,应在保证棉花品质和产量的基础上优先选育和应用兼具多种病虫抗性的棉花品种,且应避免选择对共有病虫害敏感的作物品种进行间(套)作。而研究明确间(套)作作物对棉花病虫害的抗性及其对棉田病虫害发生的影响是优化田间作物品种布局的重要基础。
三是做好病虫害发生的风险评估,适时搭配有效管理措施进行防控。关注棉花与间作作物病虫害种类的同时,也应考虑间作作物的品种类型及特性,注重棉花高产高效的同时也应考虑棉花对间作作物的影响,进行间(套)作田病虫害发生风险评估。尽量避免选择棉瓜、棉枣等不利于病虫害控制的种植模式;针对不同间(套)作模式不同时期可能出现的病虫害,统筹兼顾制定简便有效的管理策略,采用选择性杀虫剂和杀菌剂,根据病虫害发生经济阈值适时进行防控是做好间(套)棉田病虫害管控的关键。此外,针对不同的间(套)作模式,研制新型配套植保器械,也有助于间(套)作棉田病虫害风险的防控。
四是深化相关机制研究。已有对间(套)作模式下病虫害的研究主要集中于病虫害发生量和发生程度的基础调查,对病虫害发生的机制尚不十分清楚;对于棉花病虫害发生程度与寄主之间的关系研究,尚限于针对某种病害、虫害或是某种寄主植物[70,71,72]。而且现有研究多集中于间(套)作作物对棉田病虫害发生的影响,而是否也影响了棉花的抗病性、抗虫性?这些都有待深入研究。把控宏观,着手微观,结合当前棉花生产方式的转变和棉花病虫害发生趋势,研究新型高效植棉模式下不同寄主植物对不同棉花病虫害产生影响的相关机制,对今后棉花病虫害的综合治理具有重要指导意义。
曾娟, 陆宴辉, 简桂良, 等. 棉花病虫草害调查诊断与决策支持系统[M]. 北京: 中国农业出版社, 2017.
Zeng Juan,
Lu Yanhui,
Jian Guiliang, et al. An intelligent decision support system for diagnosis and management of cotton pests[M]. Beijing: China Agriculture Press, 2017.
{{custom_citationIndex}9}https://doi.org/{{custom_citationIndex}7}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citationIndex}5}{{custom_citationIndex}3}本文引用 [{{custom_ref.citationList}8}]摘要{{custom_ref.citationList}7}[2]王伟, 姚举, 李号宾, 等. 棉田周缘种植不同品种油菜诱集带增益控害效果初步研究[J]. 植物保护, 2011, 37(3): 142-145. https://doi.org/10.3969/j.issn.0529-1542.2011.03.032
Wang Wei,
Yao Ju,
Li Haobin, et al. Comparative study on conservation of natural enemy in cotton field by different rapes in Xinjiang[J]. Plant Protection, 2011, 37(3): 142-145.
{{custom_ref.citationList}6}https://doi.org/{{custom_ref.citationList}4}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citationList}2}{{custom_ref.citationList}0}本文引用 [{{custom_ref.id}5}]摘要{{custom_ref.id}4}[3]雒珺瑜, 张帅, 王春义, 等. 不同诱集作物对棉田刺吸性害虫及其天敌的生态作用比较[J]. 中国棉花, 2014, 41(8): 14-16.
Luo Junyu,
Zhang Shuai,
Wang Chunyi, et al. Ecological effects of different trap crop to sucking pests and natural enemies in cotton fields[J]. China Cotton, 2014, 41(8): 14-16.
{{custom_ref.id}3}https://doi.org/{{custom_ref.id}1}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_ref.citedCount}9}{{custom_ref.citedCount}7}本文引用 [{{custom_ref.citedCount}2}]摘要{{custom_ref.citedCount}1}[4]Burgio G,
Kristensen H L,
Campanelli G, et al. Effect of living mulch on pest/beneficial interaction[C/OL]// Rahmann G, Aksoy U. 4th International Society of Organic Agriculture Research Scientific Conference. Braunschweig, Germany: ISOFAR, 2014: 741-744 (2014-10-30)[2018-12-15]. https://doi.org/10.3220/REP_20_1_2014.
{{custom_ref.citedCount}0}https://doi.org/{{custom_citation.annotation}8}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.annotation}6}{{custom_citation.annotation}4}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[5]王玉堂. 科学间套作病轻虫又少[J]. 农药市场信息, 2015(10): 47.
Wang Yutang. Scientific intercropping can reduce pests and diseases[J]. Pesticide Market News, 2015(10): 47.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[6]薛莲. 生态防治病虫害浅析[J]. 现代农业, 2015(7): 40. https://doi.org/10.14070/j.cnki.15-1098.2015.07.031
Xue Lian. Preliminary analysis on ecological control of pests and diseases[J]. Modern Agriculture, 2015(7): 40.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[7]Lopes T,
Hatt S,
Xu Q, et al. Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control[J]. Pest management science, 2016, 72(12): 2193-2202. https://doi.org/10.1002/ps.4332
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[8]Ning C,
Qu J,
He L, et al. Improvement of yield, pest control and Si nutrition of rice by rice-water spinach intercropping[J]. Field Crops Research, 2017, 208: 34-43. https://doi.org/10.1016/j.fcr.2017.04.005
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[9]吴复晓. 棉花与花生间作的经济效益及栽培技术研究[J]. 现代经济信息, 2018(5): 375.
Wu Fuxiao. Study on economic benefits and cultivation techniques of intercropping cotton and peanut[J]. Modern Economic Information, 2018(5): 375.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[10]Kumar R,
Turkhede A B,
Nagar R K, et al. Effect of American cotton based intercropping system on yield, quality and economics[J]. Research in Environment and Life Sciences, 2017, 10(1): 75-77.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[11]Himmelstein J,
Ares A,
Gallagher D, et al. A meta-analysis of intercropping in Africa: impacts on crop yield, farmer income, and integrated pest management effects[J]. International Journal of Agricultural Sustainability, 2017, 15(1): 1-10. https://doi.org/10.1080/14735903.2016.1242332
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[12]Singh A,
Weisser W W,
Hanna R, et al. Reduce pests, enhance production: benefits of intercropping at high densities for okra farmers in Cameroon[J]. Pest Management Science, 2017, 73(10): 2017-2027. https://doi.org/10.1002/ps.4636
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[13]Mao L,
Zhang L,
Evers J B, et al. Yield components and quality of intercropped cotton in response to mepiquat chloride and plant density[J]. Field Crops Research, 2015, 179: 63-71. https://doi.org/10.1016/j.fcr.2015.04.011
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[14]Amin M R,
Islam M S,
Hasan M K, et al. Improvement of production and net economic return through intercropping of upland cotton with mungbean[J]. Azarian Journal of Agriculture, 2018, 5(2): 67-75.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[15]Ninkovic V,
Pettersson J. Searching behaviour of the sevenspotted ladybird, Coccinella septempunctata-effects of plant-plant odour interaction[J]. Oikos, 2003, 100: 65-70. https://doi.org/10.1034/j.1600-0706.2003.11994.x
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[16]Landis D A,
Wratten S D,
Gurr G M. Habitat management to conserve natural enemies of arthropod pests in agriculture[J]. Annual Review of Entomology, 2000, 45(1): 175-201. https://doi.org/10.1146/annurev.ento.45.1.175
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[17]Kadam D,
Kadam D,
Lekurwale R. Seasonal incidence of sucking pests of Bt cotton in different intercropping systems and their natural enemies[J]. Journal of Plant Pest Science, 2014, 1: 29-34.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[18]Bastola A,
Parajulee M N,
Porter R P, et al. Intercrop movement of convergent lady beetle, Hippodamia convergens (Coleoptera: Coccinellidae), between adjacent cotton and alfalfa[J]. Insect Science, 2016, 23(1): 145-156. https://doi.org/10.1111/1744-7917.12185
A 2-year study was conducted to characterize the intercrop movement of convergent lady beetle, Hippodamia convergens Guerin-Meneville (Coleoptera: Coccinellidae) between adjacent cotton and alfalfa. A dual protein-marking method was used to assess the intercrop movement of the lady beetles in each crop. In turns field collected lady beetles in each crop were assayed by protein specific ELISA to quantify the movement of beetles between the crops. Results indicated that a high percentage of convergent lady beetles caught in cotton (46% in 2008; 56% in 2009) and alfalfa (46% in 2008; 71% in 2009) contained a protein mark, thus indicating that convergent lady beetle movement was largely bidirectional between the adjacent crops. Although at a much lower proportion, lady beetles also showed unidirectional movement from cotton to alfalfa (5% in 2008 and 6% in 2009) and from alfalfa to cotton (9% in 2008 and 14% in 2009). The season-long bidirectional movement exhibited by the beetles was significantly higher in alfalfa than cotton during both years of the study. The total influx of lady beetles (bidirectional and unidirectional combined) was significantly higher in alfalfa compared with that in cotton for both years. While convergent lady beetles moved between adjacent cotton and alfalfa, they were more attracted to alfalfa when cotton was not flowering and/or when alfalfa offered more opportunities for prey. This study offers much needed information on intercrop movement of the convergent lady beetle that should facilitate integrated pest management decisions in cotton utilizing conservation biological control. © 2014 Institute of Zoology, Chinese Academy of Sciences.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[19]姚举, 李号宾, 阿可旦·吾外士, 等. 麦-棉邻作天敌转移规律研究[J]. 新疆农业大学学报, 1999, 22(4): 340-343.
Yao Ju,
Li Haobin,
Akedan Wuwaishi, et al. The study of the law about the transfer of natural enemies in wheat-cotton neighboring fields[J]. Journal of Xinjiang Agricultural University, 1999, 22(4): 340-343.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[20]王春义, 夏敬源, 崔金杰, 等. 北疆不同类型棉田节肢动物群落结构与多样性[J]. 棉花学报, 2004, 16(2): 112-116.
Wang Chunyi,
Xia Jingyuan,
Cui Jinjie, et al. Community structure and diversity of arthropod in different cotton fields in north Xinjiang[J]. Cotton Science, 2004, 16(2): 112-116
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[21]Castle S J. Concentration and management of Bemisia tabaci in cantaloupe as a trap crop for cotton[J]. Crop Protection, 2006, 25: 574-584. https://doi.org/10.1016/j.cropro.2005.08.013
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[22]党小燕, 刘建国, 帕尼古丽·阿汗别克, 等. 不同作物与棉花间作对棉纤维品质的影响[J]. 中国棉花, 2011, 38(12): 18-20.
Dang Xiaoyan,
Liu Jianguo,
Paniguli Ahanbieke, et al. Cotton fiber quality in cotton-based intercropping systems[J]. China Cotton, 2011, 38(12): 18-20.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[23]张滋林. 杏麦(棉)间作节肢动物群落多样性研究[D]. 乌鲁木齐: 新疆农业大学, 2011.
Zhang Zilin. Study on the diversity of arthropod community in the apricot orchards intercropping with wheat or cotton[D]. Urumqi: Xinjiang Agricultural University, 2011.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[24]王伟, 姚举, 张瑜, 等. 新疆南部棉区杏树对棉田主要害虫和自然天敌的影响[J]. 应用昆虫学报, 2012, 49(4): 951-956.
Wang Wei,
Yao Ju,
Zhang Yu, et al. Effect of apricot trees on insect pests and their natural enemies in nearby cotton fields in southern Xinjiang[J]. Chinese Journal of Applied Entomology, 2012, 49(4): 951-956.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[25]毕海燕. 枣棉间作系统节肢动物群落和主要害虫-天敌消长规律及防效评价[D]. 乌鲁木齐: 新疆农业大学, 2014.
Bi Haiyan. The dynamics and control evaluation of pest-natural with the relations of arthropod community in jujube orchards intercropping with cotton[D]. Urumqi: Xinjiang Agricultural University, 2014.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[26]张仁福, 王伟, 刘海洋, 等. 扁桃棉花间作对棉田牧草盲蝽发生与为害的影响[J]. 植物保护, 2018, 44(3): 172-176. https://doi.org/10.16688/j.zwbh.2017320
Zhang Renfu,
Wang Wei,
Liu Haiyang, et al. Effect of the occurrence and damage of Lygus pratensis (Linnaeus) on cotton under almond-cotton interplanting[J]. Plant Protection, 2018, 44(3): 172-176.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[27]Patki S S,
Sable G S. A Review: cotton leaf disease detection[J]. IOSR Journal of VLSI and Signal Processing, 2016, 6(3): 78-81.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[28]吕昭智, 李进步, 田卫东, 等. 生物多样性在害虫控制中的生态功能与机理[J]. 干旱区研究, 2005, 22(3): 400-404.
Lü Zhaozhi,
Li Jinbu,
Tian Weidong, et al. Ecological function and mechanism of biodiversity in pest control[J]. Arid Zone Research, 2005, 22(3): 400-404.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[29]王一, 杨雅婷, 杨静, 等. 物种多样性与病虫草害管理研究进展[J]. 中国生物防治学报, 2015, 31(5): 801-810.
Wang Yi,
Yang Yating,
Yang Jing, et al. Current state of species diversity and pest management[J]. Chinese Journal of Biological Control, 2015, 31(5): 801-810.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[30]路献勇, 李淑英, 朱加保, 等. 糯玉米与棉花间作对蚜虫种群的调控作用[J]. 中国棉花, 2017, 44(11): 24-27. https://doi.org/10.11963/1000-632X.lxycfr.20171115
Lu Xianyong,
Li Shuying,
Zhu Jiabao, et al. Effect of spring corn and cotton intercropping on the population dynamics of Aphis gossypii and Rhopalosiphum maidis[J]. China Cotton, 2017, 44(11): 24-27.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[31]夏敬源, 王月恒, 马艳, 等. 不同类型棉田昆虫群落调查的抽样方法研究[J]. 棉花学报, 1995, 7(3): 179-183.
Xia Jingyuan,
Wang Yueheng,
Ma Yan, et al. Sampling method for insect community survey in different cotton fields[J]. Acta Gossypii Sinica, 1995, 7(3): 178-183.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[32]张广学, 刘德明, 赵季秋, 等. 东北早熟棉区组建自控棉田生态系的研究[J]. 植物保护学报, 1990, 17(1): 1-4.
Zhang Guangxue,
Liu Deming,
Zhao Jiqiu, et al. Study on the establishment of auto-control cotton field ecosystem in early-maturing cotton area[J]. Acta Phytophylacica Sinica, 1990, 17(1): 1-4.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[33]王伟, 姚举, 李号宾, 等. 新疆麦棉间作布局及麦棉比例与棉田捕食性天敌发生的关系[J]. 植物保护, 2009, 35(5): 43-47. https://doi.org/10.3969/j.issn.0529-1542.2009.05.010
Wang Wei,
Yao Ju,
Li Haobin, et al. Occurrence of predators in different cotton fields in south Xinjiang[J]. Plant Protection, 2009, 35(5): 43-47.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[34]张现丛, 田平增. 冀南棉区棉花烂铃发生规律及防治对策[J]. 河北农业, 2013(12): 35-36.
Zhang Xiancong,
Tian Pingzeng. Occurrence regularity and control measures of cotton boll rot in cotton fields in Southern Hebei[J]. Hebei Agriculture, 2013(12): 35-36.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[35]赵建周, 杨奇华, 周明祥. 棉田综合种植油菜与高粱诱集带控制棉花害虫的效果[J]. 植物保护, 1989, 15(6): 13-14.
Zhao Jianzhou,
Yang Qihua,
Zhou Mingxiang. Effect of integrated cultivation of rape and sorghum in cotton field on controlling cotton pests[J]. Plant Protection, 1989, 15(6): 13-14.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[36]张潇丹, 廖静静, 邓维萍, 等. 镰刀菌对大蒜根系分泌物的敏感性与其致病力相关分析[J]. 植物保护, 2014, 40(6): 53-58. https://doi.org/10.3969/j.issn.0529-1542.2014.06.010
Zhang Xiaodan,
Liao Jingjing,
Deng Weiping, et al. Correlation analysis of the sensitivity of Fusarium spp. to garlic root exudates and their pathogenicity to garlic bulb[J]. Plant Protection, 2014, 40(6): 53-58.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[37]赵鸣, 杜昌春, 薛超, 等. 鲁西南不同模式棉田主要病害调查[J]. 中国棉花, 2018, 45(8): 24-28, 31. https://doi.org/10.11963/1000-632X.zmzm.20180828
Zhao Ming,
Du Changchun,
Xue Chao, et al. Occurrence of main diseases in cotton fields under different cultivation patterns in southwest Shandong province[J]. China Cotton, 2018, 45(8): 24-28, 31.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[38]Lin R,
Liang H,
Zhang R, et al. Impact of alfalfa/cotton intercropping and management on some aphid predators in China[J]. Journal of Applied Entomology, 2003, 126(1): 33-36. https://doi.org/10.1046/j.1439-0418.2003.00672.x
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[39]Zhang R Z,
Ren L,
Wang C L, et al. Cotton aphid predators on alfalfa and their impact on cotton aphid abundance[J]. Applied Entomology and Zoology, 2004, 39(2): 235-241. https://doi.org/10.1303/aez.2004.235
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[40]陈明, 罗进仓, 李国强. 刈割苜蓿助迁天敌对棉田棉蚜种群动态的影响研究(英文)[J]. 草地学报, 2011, 19(6): 922-926.
Chen Ming,
Luo Jincang,
Li Guoqiang. Evaluating alfalafa cutting as a potential measure to enhance predator abundance of Aphis gossypii (Homoptera: Aphididae) in cotton-alfalfa intercropping system[J]. Acta Agrestia Sinica, 2011, 19(6): 922-926.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[41]Layton M B,
Stewart S D. Cultural controls for the management of Lygus populations in cotton[J]. Southwestern Entomologist, 2000, 23: 83-95.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[42]郭小奇, 付晓伟, 封洪强, 等. 不同寄主对中黑盲蝽(Adelphocoris suturalis)生长发育和繁殖的影响[J]. 生态学报, 2008, 28(4): 1514-1520.
Guo Xiaoqi,
Fu Xiaowei,
Feng Hongqiang, et al. Effects of host plants on the development, survival and fecundity of Adelphocoris suturalis Jalovlev (Hemiptera: Miridae)[J]. Acta Ecologica Sinica, 2008, 28(4): 1514-1520.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[43]马玉华, 王庆江. 棉花绿豆间作经济效益好[J]. 山东农业科学, 1984, 9(1): 33.
Ma Yuhua,
Wang Qingjiang. Cotton and mung bean intercropping has good economic benefits[J]. Shandong Agricultural Sciences, 1984, 9(1): 33.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[44]王伟, 姚举, 李号宾, 等. 杏棉间作对棉花害虫与捕食性天敌的影响[J]. 新疆农业科学, 2010, 47(9): 1897-1901.
Wang Wei,
Yao Ju,
Li Haobin, et al. Effect of interplanting of cotton and apricot on cotton pests and predatory natural enemies[J]. Xinjiang Agricultural Sciences, 2010, 47(9): 1897-1901.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[45]白玉灵, 周贺廷. 棉花胡卢巴间作防蚜效果显著[J]. 昆虫学报, 1982, 25(3): 350.
Bai Yuling,
Zhou Heting. The effect of suppressing cotton aphid population by interplanting Trigonella foenum-graecyn L.[J]. Acta Entomologica Sinica, 1982, 25(3): 350.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[46]曹焕. 棉叶螨发生规律及综合防治技术[J]. 农村科技, 2014(12): 45-46.
Cao Huan. Occurrence regularity and integrated control technology of cotton leaf mite[J]. Rural Science & Technology, 2014(12): 45-46.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[47]张秀梅, 刘小京, 杨艳敏, 等. 绿盲蝽在Bt转基因棉及枣树上的发生规律[J]. 华东昆虫学报, 2005, 14(1): 28-32.
Zhang Xiumei,
Liu Xiaojing,
Yang Yanmin, et al. Occurrence of Lygus lucorum in the Bt cotton and jujube field[J]. Entomological Journal of East China, 2005, 14(1): 28-32.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[48]牛赡光, 王清海, 刘幸红, 等. 棉花绿盲蝽在东营地区发生危害规律及防治技术研究[J]. 山东农业科学, 2011, 4(2): 83-85.
Niu Shanguang,
Wang Qinghai,
Liu Xinghong, et al. Study on occurrence regularity and control technique of Lygus lucorum in Dongying region[J]. Shandong Agricultural Sciences, 2011, 4(2): 83-85.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[49]Risch S J,
Andow D,
Altieri M A. Agroecosystem diversity and pest control: data, tentative conclusions, and new research directions[J]. Environmental Entomology, 1983, 12: 625-629. https://doi.org/10.1093/ee/12.3.625
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[50]Andow D A. Vegetational diversity and arthropod population response[J]. Annual Review of Entomology, 1991, 36: 561-586. https://doi.org/10.1146/annurev.en.36.010191.003021
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[51]郭建英, 万方浩, 胡雅辉, 等. 不同作物布局方式对转基因抗虫棉田节肢动物群落结构的影响[J]. 应用生态学报, 2007, 18(9): 2061-2068.
Guo Jianying,
Wan Fanghao,
Hu Yahui, et al. Effects of crop arrangement patterns on arthropod community structure in transgenic boll-worm-resistant cotton fields[J]. Chinese Journal of Applied Ecology, 2007, 18(9): 2061-2068.
The study on the arthropod community structures in transgenic bollworm-resistant cotton (cv. Lumianyan 15) fields with different crop arrangement patterns showed that compared with those in mono-cultured cotton plot, there were more species of arthropod community and of phytophagous pest and natural enemy sub-communities as well as more individuals of neutral arthropods in vegetable-, fruit tree-, and peanut-cotton plots. More individuals of phytophagous pests in vegetable- and peanut-cotton plots, and natural enemies in vegetable- and fruit tree-cotton plots were observed. The arthropod community in peanut- and fruit tree-cotton plots had the highest similarity, while that in mono-cultured cotton and vegetable-cotton plots had the lowest one. The Renyi diversity index indicated that compared with mono-cultured cotton plot, vegetable-cotton plot had lower diversities of arthropod community and pest sub-community, while fruit tree- and peanut-cotton plots had higher diversities of arthropod community and natural enemy sub-community, and of arthropod community and pest sub-community diversity, respectively. It was concluded that fruit tree-cotton was a recommendable crop arrangement pattern for transgenic bollworm-resistant cotton.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[52]陈明, 周昭旭, 罗进仓. 间作苜蓿棉田节肢动物群落生态位及时间格局[J]. 草业学报, 2008, 17(4): 132-140.
Chen Ming,
Zhou Zhaoxu,
Luo Jincang. Niche and temporal pattern of arthropod community in alfalfa-cotton intercropping field[J]. Acta Prataculturae Sinica, 2008, 17(4): 132-140.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[53]崔金杰, 马艳. 利用自然控制因素防治棉花害虫[J]. 昆虫知识, 1994, 31(5): 279-281.
Cui Jinjie,
Ma Yan. Using natural control factors to control cotton pests[J]. Entomological Knowledge, 1994, 31(5): 279-281.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[54]唐保善, 渭耕. 麦套棉田害虫发生特点及综合治理[J]. 江西棉花, 1997(2): 28-29.
Tang Baoshan,
Wei Geng. Occurrence characteristics and integrated control of pests in wheat-cotton intercropping field[J]. Jiangxi Cotton, 1997(2): 28-29.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[55]Zhang L,
Van Der Werf W,
Zhang S, et al. Growth, yield and quality of wheat and cotton in relay strip intercropping systems[J]. Field Crops Research, 2007, 103: 178-188. https://doi.org/10.1016/j.fcr.2007.06.002.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[56]Siddiqui S,
Abro G H,
Syed T S, et al. Influence of trap crops on management of insect pests by exploitation of heteropteran predatory bugs in cotton[J]. Pakistan Journal of Agricultural Research, 2018, 31(3): 274-278.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[57]Zhang R,
Liang H,
Tian C, et al. Biological mechanism of controlling cotton aphid (Homoptera: aphididae) by the marginal alfalfa zone surrounding cotton field[J]. Chinese Science Bulletin, 2000, 45(4): 355-358.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[58]王小林, 张岁岐, 王淑庆, 等. 黄土塬区不同品种玉米间作群体生长特征的动态变化[J]. 生态学报, 2012, 32(23): 7383-7390. https://doi.org/10.5846/stxb201111111716
Wang Xiaolin,
Zhang Suiqi,
Wang Shuqing, et al. The dynamic variation of maize (Sea mays L.) population growth characteristics under cultivars-intercropped on the Loess Plateau[J]. Acta Ecologica Sinica, 2012, 32(23): 7383-7390.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[59]郭仁松, 田立文, 林涛, 等. 枣棉间作棉田花铃期小气候变化特征及对产量的影响[J]. 西北农业学报, 2014, 23(2): 92-98. 10.7606/j.issn.1004 1389.2014.02.017
Guo Rensong,
Tian Liwen,
Lin Tao, et al. Effect of jujube-cotton intercropping on characteristics of microclimate during cotton flowering and boll-setting period and cotton yield[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(2): 92-98.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[60]徐金虹. 枣棉间作棉叶螨猖獗发生的原因及综防措施[J]. 新疆农业科技, 2011(5): 33.
Xu Jinhong. Reasons for the serious damage of cotton spider mite in jujube-cotton intercropping and comprehensive control measures[J]. Xinjiang Agricultural Science and Technology, 2011(5): 33.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[61]崔爱花, 杜传莉, 黄国勤. 红壤旱地棉田间作小气候效应初步研究[J]. 气象与减灾研究, 2016, 39(4): 290-294.
Cui Aihua,
Du Chuanli,
Huang Guoqin. Preliminary study on microclimate effects of cotton field intercropping in upland red soil[J]. Meteorology and Disaster Reduction Research, 2016, 39(4): 290-294.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[62]商兆堂, 魏建苏, 蒯军, 等. 棉盲蝽发生动态与气象条件关系分析[J]. 植物保护, 2010, 36(5): 92-95. https://doi.org/10.3969/j.issn.0529-1542.2010.05.019
Shang Zhaotang,
Wei Jiansu,
Kuai Jun, et al. Analyses of the relations between cotton mired dynamics and meteorological conditions[J]. Plant Protection, 2010, 36(5): 92-95.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[63]晁海, 张大海, 徐林, 等. 杏棉间作系统小气候水平分布特征研究[J]. 新疆农业大学学报, 2007, 30(1): 35-39.
Chao Hai,
Zhang Dahai,
Xu Lin, et al. Study on microclimatic horizontal distribution law of apricot cotton intercropping system[J]. Journal of Xinjiang Agricultural University, 2007, 30(1): 35-39.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[64]刘淑俊, 周永萍. 河北植棉区防治棉花烂铃的措施概述[J]. 棉花科学, 2018, 40(2): 39-40. https://doi.org/10.3969/j.issn.2095-3143.2018.02.009
Liu Shujun,
Zhou Yongping. Summary of measures to control cotton rotten in Hebei planting cotton area[J]. Cotton Sciences, 2018, 40(2): 39-40.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[65]Kirkpatrick T Y,
Sasser J N. Parasitic variability of Meloidogyne incognita population on susceptible and resistant cotton[J]. Journal of Nematology, 1983, 14: 302-307.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[66]孟庆华, 赵逢涛, 王凤梅, 等. 棉花玉米宽幅间作高产高效栽培技术[J]. 耕作与栽培, 2017(6): 72-74. https://doi.org/10.13605/j.cnki.52-1065/s.2017.06.029
Meng Qinghua,
Zhao Fengtao,
Wang Fengmei, et al. The high-yield and efficiency cultivation techniques of cotton in wide space inercropping with maize[J]. Tillage and Cultivation, 2017(6): 72-74.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[67]Riolo M A,
Rohani P,
Hunter M D. Local variation in plant quality influences large-scale population dynamics[J]. Oikos, 2015, 124: 1160-1170. https://doi.org/10.1111/oik.01759
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[68]承泓良, 赵洪亮, 李汝忠. 棉花黄萎病研究与应用[M]. 济南: 山东科学技术出版社, 2016.
Cheng Hongliang,
Zhao Hongliang,
Li Ruzhong. Research and application of Verticillium dahliae Kleb[M]. Jinan: Shandong Science and Technology Press, 2016.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[69]Miller G,
Greene J. Intercropping seedless watermelon and cotton[J]. HortScience, 2018, 53(12): 1799-1803. https://doi.org/10.21273/HORTSCI13428-18
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[70]丁岩钦. 棉盲蝽生态学特性的研究 Ⅱ.棉株化学成分的含量与盲蝽为害的关系[J]. 植物保护学报, 1963, 2(4): 365-370.
Ding Yanqin. Studies on the ecological characteristics of cotton blind mites II. The relationship between the chemical constituents of cotton plants and the damage caused by blind mites[J]. Journal of Plant Protection, 1963, 2(4): 365-370.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[71]Tingey W M,
Leigh T F,
Hyer A H. Lygus hesperus: growth, survival, and egg laying resistance of cotton genotypes[J]. Journal of Economic Entomology, 1976, 68(1): 28-30. https://doi.org/10.1093/jee/68.1.28
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}[72]朱晓华, 丁瑞丰, 阿克旦·吾外士, 等. 不同防治方法对瓜棉套作田棉蚜及其主要天敌种群的影响[J]. 新疆农业科学, 2015, 52(11): 2097-2102. https://doi.org/10.6048/j.issn.1001-4330.2015.11.020
Zhu Xiaohua,
Ding Ruifeng,
Akedan Wuwaishi, et al. Effects of different control methods on the population of aphids and its major natural enemies in the melon and cotton intercropping field[J]. Xinjiang Agricultural Sciences, 2015, 52(11): 2097-2102.
{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}{{custom_ref.label}}{{custom_citation.content}}https://doi.org/{{custom_citation.doi}}https://www.ncbi.nlm.nih.gov/pubmed/{{custom_citation.pmid}}{{custom_citation.url}}本文引用 [{{custom_ref.citedCount}}]摘要{{custom_citation.annotation}}版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。
相关知识
河南省花生主要病虫害全程绿色防控技术
豫东平原花生病虫害绿色防控技术规程
转Bt基因棉对棉田生态系统的影响及其生态安全性
苹果谢花后至套袋前常见病虫害绿色防控技术
棉田推广应用绿色防控技术的生产实践
2020年7月棉田病虫害发生与防控技术建议
湖南省十字花科蔬菜重大病虫害防控技术
病虫害绿色防控
茶园间作对茶树生长及生态的影响
滨州示范棉花病虫害全程绿色高效防控技术模式取得成效
网址: 间(套)作对棉田病虫害的防控效应及其风险控制 https://m.huajiangbk.com/newsview527955.html
上一篇: 最是一年菊好时 |
下一篇: 果园安全:病虫害防治的风险评估. |