import tensorflow as tf
from sklearn import datasets
from sklearn.datasets import load_iris
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
import tensorflow as tf
import torch.optim as opt
import torch.nn.functional as F
import torch
from sklearn.preprocessing import LabelEncoder
from torch.utils.data import Dataset,DataLoader
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
import copy
import matplotlib
import matplotlib.pyplot as plt
from pandas import DataFrame
from sklearn.metrics import confusion_matrix
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
数据探索x_data = datasets.load_iris().data
y_data = datasets.load_iris().target
print("x_data from datasets: n", x_data)
print("y_data from datasets: n", y_data)
x_data = DataFrame(x_data, columns=['花萼长度', '花萼宽度', '花瓣长度', '花瓣宽度'])
pd.set_option('display.unicode.east_asian_width', True)
x_data['类别'] = y_data
print("x_data add index: n", x_data)
print("x_data add a column: n", x_data)
x_data.info()
x_data.describe() 通过对数据的简单浏览,不难发现花萼或者花瓣的形状特征对花的品质有着很大的影响,但是初略的观测难以观察出对于结果的影响,通过对数据进行统计画图分析就能更直观分析以及对数据进行简单的预测
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
TRAIN_URL = "http://download.tensorflow.org/data/iris_training.csv"
train_path = tf.keras.utils.get_file("iris_training.csv",TRAIN_URL)
COLUMN_NAMES = ["SepalLength","SepalWidth","PetalLength","PetalWidth","Species"]
df_iris = pd.read_csv(train_path,header=0,names=COLUMN_NAMES)
iris = np.array(df_iris)
fig = plt.figure('Iris Data',figsize=(15,15))
fig.suptitle("Aderson's iris data setn(blue->setosa | red->versicolor | green->virginica)")
for i in range(4):
for j in range(4):
plt.subplot(4,4,i*4+j+1)
if(i==j):
plt.text(0.3,0.4,COLUMN_NAMES[i],fontsize=15)
else:
plt.scatter(iris[:,j],iris[:,i],c=iris[:,4],cmap='brg')
if(i==0):
plt.title(COLUMN_NAMES[j])
if(j==0):
plt.ylabel(COLUMN_NAMES[i])
plt.tight_layout()
plt.show()
相关知识
python数据分析与展示
使用Python一步一步地来进行数据分析总结
Python实现NIKE耐克女REACT跑步鞋数据分析和可视化
Python时间序列分析入门指南:季节性调整方法
深度学习花卉识别:Python数据集解析
重要的数据分析方法:时间序列分析
python利用c4.5决策树对鸢尾花卉数据集进行分类(iris)
python二级选择题与分析(8)
卷积神经网络实现鸢尾花数据分类python代码实现
Python中的数据可视化:Matplotlib基础与高级技巧
网址: Python数据分析 https://m.huajiangbk.com/newsview546452.html
上一篇: 阿里巴巴花卉数据分析怎么做的啊 |
下一篇: 物流轨迹即时查询api系统平台 |