首页 > 分享 > 棉花抗逆遗传改良技术与应用

棉花抗逆遗传改良技术与应用

参考文献

[1] Shinozaki K, Yamaguchi-Shinozaki K, Seki M. Regulatory network of gene in the drought and cold stress responses[J]. Current Opinion in Plant Biology, 2003, 6(5): 410-417.
[2] Zhang Lida, Yu Shuxun, Zuo Kaijing, et al. Identification of gene modules associated with drought response in rice by network-based analysis[J/OL]. PLoS ONE, 2012, 7(5): e33748 (2012-05-25) [2017-07-01]. https://doi.org/10.1371/journal.pone.0033748.
[3] Butt H I, YangZhao'en, Chen Eryong, et al. Functional characterization of cotton GaMYB62L, a Novel R2R3 TF in transgenic Arabidopsis[J/OL]. PLoS ONE, 2017, 12 (1): e0170578 (2017-01- 26) [2017-07-01]. https://doi.org/10.1371/journal.pone.0170578.
[4] Mustilli A C, Merlot S, Vavasseur A, et al. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J]. Plant Cell, 2002, 14(12): 3089-3099.
[5] McLoughlin F, Galvan-Ampudia C S, Julkowska M M, et al. The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress[J]. Plant Journal, 2012, 72(3): 436-449.
[6] Liu Zhao, Ge Xiaoyang, Yang Zuoren, et al. Genome-wide identification and characterization of SnRK2 gene family in cotton (Gossypium hirsutum L.)[J/OL]. BMC Genetics, 2017, 18(1): 54 (2017-06-12) [2017-07-01]. http://dx.doi.org/10.1186/s12863-017- 0517-3.
[7] Zhu Dan, Cai Hua, Luo Xiao, et al. Over- of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance[J]. Biochemical and Biophysical Research Communications, 2012, 426(2): 273-279.
[8] Wu Xiuming, Li Fuguang, Zhang Chaojun, et al. Differential gene of cotton cultivar CCRI 24 during somatic embryogenesis[J]. Journal of Plant Physiology, 2009, 166(12): 1275- 1283.
[9] Xu Zhenzhen, Zhang Chaojun, Ge Xiaoyang, et al. Construction of a high-density linkage map and mapping quantitative trait loci for somatic embryogenesis using leaf petioles as explants in upland cotton (Gossypium hirsutum L.)[J]. Plant Cell Reports, 2015, 34(7): 1177-1187.
[10] Zhao Ge, Song Yun, Wang Caixiang, et al. Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton[J]. Molecular Genetics and Genomics, 2016, 291(6): 2173-2187.
[11] Bello B, Zhang X, Liu C, et al. Cloning of Gossypium hirsutum sucrose non-fermenting 1-related protein kinase 2 gene (GhSnRK2) and its over in transgenic Arabidopsis esca lates drought and low temperature tolerance[J/OL]. PLoS ONE, 2014, 9(11): e112269 (2014-11-13) [2017-07-01]. https://doi.org/10.1371/journal.pone.0112269.
[12] Wang Yiqin, Liang Chenzhen, Wu Shenjie, et al. Significant improvement of cotton Verticillium wilt resistance by manipulating the of gastrodia antifungal proteins[J]. Molecular Plant, 2016, 9(10): 1436-1439.
[13] Yang Zuoren, Zhang Chaojun, Yang Xiaojie, et al. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation[J]. New Phytologist, 2014, 203(2): 437-448.
[14] Zhang Jinfa, Fang Hui, Zhou Huiping, et al. Genetics, breeding, and marker-assisted selection for Verticillium wilt resistance in cotton[J]. Crop Science, 2014, 54: 1289-1303.
[15] 王红梅, 陈伟, 李运海, 等. 中棉所76的选育及品种特性[C]// 中国棉花学会. 中国棉花学会2010年年会论文汇编. 安阳: 中国棉花杂志社, 2010: 224.
Wang Hongmei, Chen Wei, Li Yunhai, et al. Breeding and characteristics of cotton variety CCRI 76[C]// Proceedings of the Annual Conference of the China Society of Cotton Sci-tech in 2010. Anyang: China Cotton Magazine House, 2010: 224.
[16] 郭香墨, 范术丽, 王红梅, 等. 我国棉花育种技术的创新与成就[J]. 棉花学报, 2007, 19(5): 323-330.
Guo Xiangmo, Fan Shuli, Wang Hongmei. Achivements of technical innovation about cotton genetics and breeding in China[J]. Cotton Science, 2007, 19(5): 323-330.
[17] 王宁, 黄群, 匡猛, 等. 新育种方法在中棉所49选育中的应用[J]. 中国棉花, 2015, 42(4): 25-26.
Wang Ning, Huang Qun, Kuang Meng, et al. Application of a new breeding method in the breeding of CCRI 49[J]. China cotton, 2015, 42(4): 25-26.
[18] 严根土, 匡猛, 杨杰, 等. 一种提高棉花产量和品质的育种方法: ZL2014 1 0308678.6[P]. 2015-12-30.
Yan Gentu, Kuang Meng, Yang Jie, et al. A breeding method of improving the cotton yield and quality: ZL2014 1 0308678.6[P]. 2015-12-30.
[19] 王红梅. 棉花抗黄萎病遗传及分子标记研究[M]. 武汉: 华中农业大学, 2005.
Wang Hongmei. Study on the inheritance and QTLs mapping of Verticillium wilt in cotton[M]. Wuhan: Huazhong Agricultural University, 2005.
[20] 王红梅, 张献龙, 贺道华, 等. 陆地棉对黄萎病抗性的分子标记研究[J]. 植物病理学报, 2005, 35( 4): 333-339.
Wang Hongmei, Zhang Xianlong, He Daohua, et al. Detection of DNA markers associated with resistance to Verticillium dahliae in cotton[J]. Acta Phytopathologica Sinica, 2005, 35(4): 333-339.
[21] Wang Hongmei, Lin Zhongxu, Zhang Xianlong, et al. Mapping and quantitative trait loci analysis of Verticillium wilt resistance genes in cotton[J]. Journal of Integrative Plant Biology, 2008, 50(2): 174-182.
[22] Zhao Yunlei, Wang Hongmei, Chen Wei, et al. Genetic structure, linkage disequilibrium and association mapping of Verticillium wilt resistance in elite cotton (Gossypium hirsutum L.) germplasm population[J/OL]. PLoS ONE, 2014, 9(1): e86308 (2014-01-23) [2014-01-23]. https://doi.org/10.1371/journal.pone. 0086308.
[23] 孔祥瑞, 王红梅, 陈伟, 等. 陆地棉黄萎病抗性的分子标记辅助选择效果[J]. 棉花学报, 2010, 22(6): 527-532.
Kong Xiangrui, Wang Hongmei, Chen Wei, et al. Effect of molecular marker assisted selection to Verticillium wilt resistance in upland cotton breeding[J]. Cotton Science, 2010, 22(6): 527-532.
[24] 王红梅, 赵云雷, 陈伟, 等. 一种用于陆地棉抗黄萎病性状辅助选择育种的分子标记: ZL201010294455.0[P]. 2012-11-07.
Wang Hongmei, Zhao Yunlei, Chen Wei, et al. Molecular markers for marker assisted selection in cotton breeding: ZL201010294455.0[P]. 2012-11-07. 
[25] 赵云雷, 王红梅, 陈伟, 等. 基于优异等位基因的棉花抗黄萎病性状的分子鉴定[J]. 中国农业科学, 2017, 50(2): 216-227.
Zhao Yunlei, Wang Hongmei, Chen Wei, et al. Elite alleles-based molecular detection for Verticillium wilt resistance in cotton[J]. Scientia Agricultura Sinica, 2017, 50(2): 216-227
[26] 王红梅, 赵云雷, 陈伟, 等. 预测不同棉花材料间抗黄萎病性状强弱的分子方法: ZL201410049099.4[P]. 2015-05-13.
Wang Hongmei, Zhao Yunlei, Chen Wei, et al. Molecular method of predicting Verticillium wilt resistance in cotton: ZL201410049099.4[P]. 2015-05-13.
[27] 刘少卿, 何守朴, 米拉吉古丽, 等. 不同棉花种质资源耐热性鉴定[J]. 植物遗传资源学报, 2013, 14(2): 214-221.
Liu Shaoqing, He Shoupu, Milaji Guli, et al. Identification for the thermo tolerance of different germplasm in cotton[J]. Journal of Plant Genetic Resources, 2013, 14(2): 214-221.
[28] 王飞, 匡猛, 许红霞, 等. 7个棉花品种SSR位点纯合度研究与分析[J]. 棉花学报, 2013, 25(3): 234-239.
Wang Fei, Kuang Meng, Xu Hongxia, et al. SSR locus purity research and analysis of seven cotton cultivars[J]. Cotton Science, 2013, 25(3): 234-239.
[29] 匡猛, 杨伟华, 许红霞, 等. 中国棉花主栽品种DNA指纹图谱构建及SSR标记遗传多样性分析[J]. 中国农业科学, 2011, 44(1): 20-27.
Kuang Meng, Yang Weihua, Xu Hongxia, et al. Construction of DNA fingerprinting and analysis of genetic diversity with SSR markers for cotton major cultivars in China[J]. Scientia Agricultura Sinica, 2011, 44(1): 20-27.
[30] 王宁. 转基因钾高效棉花优良株系的筛选及功能鉴定[M]. 北京: 中国农业大学, 2013.
Wang Ning. Screening and functional identification of transgenic K+-efficient lines in cotton (Gossypium hirsutum L.)[M] Beijing: China Agricultural University, 2013.
[31]  王宁, 许庆华, 杨杰, 等. 一种测定棉花钾离子吸收动力学的方法: ZL2016 1 0095913.0[P]. 2017-06-16.
Wang Ning, Xu Qinghua, Yang Jie, et al. A determination method of potassium absorption kinetics of cotton: ZL2016 1 0095913.0[P]. 2017-06-16.
[32] Wang Ning, Qi Haikun, Qiao Wenqing, et al. Cotton (Gossypium hirsutum L.) genotypes with contrasting K+/Na+ ion homeostasis: Implications for salinity tolerance[J]. Acta Physiologiae Plantarum, 2017, 39: 77.
[33] Wang Ning, Qi Haikun, Su Guilan, et al. Genotypic variations in ion homeostasis, photochemical efficiency and antioxidant capacity adjustment to salinity in cotton[J]. Soil Science and Plant Nutrition, 2016, 62(3): 240-246.
[34] 王宁, 杨杰, 黄群, 等. 盐胁迫下棉花K+和Na+离子转运的耐盐性生理机制[J]. 棉花学报, 2015, 27(3): 208-215.
Wang Ning, Yang Jie, Huang Qun, et al. Physiological salinity tolerance mechanism for transport of K+ and Na+ ions in cotton (Gossypium hirsutum L.) seedlings under salt stress[J]. Cotton Science, 2015, 27(3): 208-215.
[35] 王宁, 田晓莉, 段留生, 等. 缩节胺浸种提高棉花幼苗根系活力中的活性氧代谢[J]. 作物学报, 2014, 40(7): 1220-1226.
Wang Ning, Tian Xiaoli, Duan Liusheng, et al. Metabolism of reactive oxygen species involved in increasing root vigour of cotton seedlings by soaking seeds with mepiquat chloride[J]. Acta Agronmica Sinica, 2014, 40(7): 1220-1226.
[36] 邓福军. 新疆棉花主栽品种及其良繁体系建设现状与建议[J]. 新疆农垦科技, 2013(1): 3-4.
Deng Fujun. The major cotton cultivars in Xinjiang and present situation and advice of seed breeding system[J]. Xinjiang Agricultural Science and Technology, 2013(1): 3-4.
[37] 张国伟, 杨长琴, 刘瑞显, 等. 江苏省滨海盐碱地植棉适宜品种筛选与评价[J]. 中国棉花, 2014, 41(9): 7-12.
Zhang Guowei, Yang Changqin, Liu Ruixian, et al. Screening and evaluation of cotton varieties planted in coastal saline-alkaline area in Jiangsu province[J]. China Cotton, 2014, 41(9): 7-12.
[38] 刘鹏鹏, 陈全家, 曲延英, 等. 棉花种质资源抗旱性评价[J]. 新疆农业科学, 2014, 51(11): 1961-1969.
Liu Pengpeng, Chen Quanjia, Qu Yanying, et al. The drought resistance evaluation of cotton germplasm resources[J]. Xinjiang Agricultural Sciences, 2014, 51(11): 1961-1969.
[39] 武辉, 侯丽丽, 周艳飞, 等. 不同棉花基因型幼苗耐寒性分析及其鉴定指标筛选[J]. 中国农业科学, 2012, 45(9): 1703-1713.
Wu Hui, Hou Lili, Zhou Yanfei, et al. Analysis of chilling-tolerance and determination of chilling-tolerance evaluation indicators in cotton of different genotypes[J]. Scientia Agricultura Sinica, 2012, 45(9): 1703-1713.
[40] 苏桂兰, 金石桥, 赵淑琴, 等. 中棉所49及其亲本中棉所35农艺及产量性状的通径分析[J]. 中国棉花, 2014, 41(12): 26-29.
Su Guilan, Jin Shiqiao, Zhao Shuqin, et al. Path analysis of CCRI 49 and one of its parents, CCRI 35, between agronomic and yield-related traits of cotton[J]. China Cotton, 2014, 41(12): 26-29.
[41] 王宁, 苏桂兰, 周红, 等. 中国与美国棉花品种的铃质量与衣分差异分析[J]. 河南农业科学, 2015, 44(7): 43-47.
Wang Ning, Su Guilan, Zhou Hong, et al. Difference analysis of boll weight and lint index of cotton between Chinese and American varieties[J]. Journal of Henan Agricultural Sciences, 2015, 44(7): 43-47.
[42] 张宝娟, 颜哲, 李富强, 等. 塔里木垦区中棉49号超高产栽培技术[J]. 农业科技, 2013(7): 5-6.
Zhang Baojuan, Yan Zhe, Li Fuqiang, et al. Cultivation techniques for super-high-yield culture of CCRI 49 in Tarim reclamation area[J]. Agricultural Science and Technology, 2013(7): 5-6.
[43] 金石桥, 赵淑琴, 许乃银. 中棉所49在西北内陆棉区的稳定性与丰产性分析[J]. 中国棉花, 2014, 41(5): 22-25.
Jin Shiqiao, Zhao Shuqin, Xu Naiyin. Analysis of the stability and high yielding ability of CCRI 49 in the Northwest Inland Cotton Planting Region[J]. China Cotton, 2014, 41(5): 22-25.
[44] 吐拉拉卡斯木. 中棉所49特征特性及栽培要点[J]. 新疆农业科技, 2008(4): 38.
Tulalakasimu. Characteristics and cultivation gist of CCRI 49[J]. Xinjiang Agricultural Science and Technology, 2008(4): 38.
[45] 严根土, 刘全义, 张裕繁, 等. 耐盐棉花新品种中棉所44[J]. 中国棉花, 2004, 31(10): 21.
Yan Gentu, Liu Quanyi, Zhang Yufan, et al. A new variety of salt tolerant cotton, CCRI 44[J]. China Cotton, 2004, 31(10): 21.
[46] 王红梅, 陈伟, 赵云雷, 等. 丰产抗虫常规棉新品种——中棉所89[J]. 中国棉花, 2014, 41(10): 26-27.
Wang Hongmei, Chen Wei, Zhao Yunlei, et al. Conventional cotton variety for good harvest―CCRI 89[J]. China Cotton, 2014, 41(10): 26-27.
[47] 王宁, 杨杰, 苏桂兰, 等. 中棉所49基础种大群体自交纯化提高技术[J]. 河北农业科学, 2015, 19(4): 77-81.
Wang Ning, Yang Jie, Su Guilan, et al. Foundation seed screening and purification of CCRI 49[J]. Journal of Hebei Agricultural Sciences, 2015, 19(4): 77-81.
[48] 李汉华, 严根土. 降低中棉所49棉子破碎率的几项措施[J]. 中国棉花, 2011, 38(2): 33-34.
Li Hanhua, Yan Gentu. Several measures to reduce the percentage of CCRI 49 cottonseed breakage[J]. China Cotton, 2011, 38(2): 33-34.
[49] 王延琴, 阿扎提·皮尔多斯. 中棉所49棉花全程标准体系指南[M]. 北京: 中国标准出版社, 2016: 5-6.
Wang Yanqin, Azhati Pierduosi. The guide of the whole standard system of CCRI 49[M]. Beijing: China Standards Press, 2016: 5-6.  

{{custom_fnGroup.title_cn}}

脚注

{{custom_fn.content}}

基金

“十三五”中国农业科学院科技创新工程——棉花抗逆遗传改良(CAAS-ASTIP-2017-ICR)

{{custom_fund}}

相关知识

棉花遗传改良团队开发出植物甲基化编辑工具
棉花多逆抗性育种的研究
《抗病虫育种》课件
基因组编辑技术应用于作物遗传改良的进展与挑战
棉花遗传改良团队2024级新生见面会及新生培训开班
棉花抗逆高产的培育方法,首先要选好品种
抗逆育种第一节逆境及抗逆育种.pdf
玢姬花的遗传改良技术有哪些?
切花采后品质调控的遗传基础与遗传改良技术(下)
《园艺植物遗传育种》课件.pptx

网址: 棉花抗逆遗传改良技术与应用 https://m.huajiangbk.com/newsview671771.html

所属分类:花卉
上一篇: CRISPR基因编辑技术加速蔬菜
下一篇: 灯盏花遗传改良研究及其策略